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Preface

Failures of engineered systems can result in enormous repair/replacement costs and
can also cause life-threatening consequences, such as explosion and fire. Since the
1980s, major industries and government agencies worldwide have faced increasing
challenges in ensuring the reliability and safety of engineered systems. Examples of
failures in attaining high reliability include the Chernobyl disaster in Russia (1986),
the collapse of the I-35W Mississippi River Bridge in the USA (2007), and the
lithium-ion (Li-ion) battery fire/smoke issues on Boeing 787 Dreamliners in the
USA and Japan (2013). The rapidly increasing failure costs associated with these
failures, along with stringent reliability and safety requirements, have resulted in
considerable research attention directed toward developing probabilistic analysis
and design methods that can be used to analyze and improve the reliability and
safety of engineered systems. This book presents a comprehensive description
of these probabilistic methods. The text is packed with many practical engineering
examples (e.g., electric power transmission systems, aircraft power generating
systems, and mechanical transmission systems) and exercise problems. It is an
up-to-date, fully illustrated reference suitable for both undergraduate and graduate
engineering students, researchers, and professional engineers who are interested in
exploring the fundamentals, implementation, and applications of probabilistic
analysis and design methods. The probabilistic methods presented in this book
include (i) conventional statistical methods and Bayesian statistics for data analysis;
(ii) direct and smart Monte Carlo simulation methods, first- and second-order
reliability methods, and stochastic response surface methods for reliability analysis
in design; (iii) reliability-based design optimization; and (iv) signal processing,
classification, and regression methods for reliability analysis in operation (prog-
nostics and health management). The contents of the book provide a sufficient
working knowledge to enable all interested parties to perform probabilistic analysis
and design.

Chapters 2 and 3 present fundamental probability theory and commonly used
statistical data analysis techniques. This foundation provides a sufficient background
for the in-depth investigations in later chapters that address the above-mentioned
challenges. The statistical methods presented in these two chapters serve as an
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important tool for reliability engineers because they provide both descriptive and
analytical ways to deal with the uncertainty in simulation or experimental data.

The rest of the chapters in this book address the two main challenges in the
practice of life-cycle reliability engineering: (i) how to design a reliable engineered
system during the design stage and (ii) how to achieve high operational reliability
during operation of a system. Reliability-based design with time-independent
reliability analysis tackles the first challenge. Addressing this challenge is the pri-
mary focus of this book. Chapter 4 presents the fundamentals of reliability analysis,
including the concepts and formulations of time-independent and time-dependent
reliability analyses. Chapter 5 introduces state-of-the-art techniques for time-
independent reliability analysis, including the first- and second-order reliability
methods (FORM/SORM), direct and smart Monte Carlo simulation (MCS), and
emerging stochastic response surface methods. Chapter 6 discusses the advanced
topic of reliability analysis: time-dependent reliability analysis in design. Chapter 7
explains how to design a reliable product by introducing reliability-based design
optimization (RBDO).

Health monitoring, diagnostics, prognostics, and management strategies have
been proposed to address the second challenge. These techniques have been
cohesively integrated to the point where a new discipline has emerged: prognostics
and health management (PHM). In recent years, PHM has been successfully applied
to many engineered systems to assess their health conditions in real time under
actual operating conditions and to adaptively enhance life-cycle reliabilities through
condition-based maintenance, which allows for the anticipation and prevention of
unexpected system failures. Chapter 8 discusses the current state-of-the-art tech-
niques from this emerging discipline and Chap. 9 presents successful practices in
several engineering fields.

Each chapter has an extensive collection of examples and exercises, including
engineering and/or mathematical examples that illustrate the material in that
chapter. Supplemental exercises are also provided to allow learners to practice
application to improve understanding of the topics discussed in that chapter.

The authors would like to acknowledge that the work presented in this book was
partially supported by the following organizations: the US National Science
Foundation (NSF): the NSF I/UCRC Center for e-Design, the US Army TARDEC,
the US Nuclear Regulatory Commission (NRC), the Maryland Industrial
Partnerships Program (MIPS), the Korea Institute of Energy Technology Evaluation
and Planning (KETEP), the National Research Foundation (NRF) of Korea, the
Korea Institute of Machinery and Materials, the Korea Agency for Infrastructure
Technology Advancement (KAIA), General Motors, LG Electronics, and Samsung
Electronics.

Ames, USA Chao Hu
Seoul, Korea (Republic of) Byeng D. Youn
Urbana, USA Pingfeng Wang
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Chapter 1
Basic Concepts of Reliability

In the past few decades, reliability has been widely recognized as of great impor-
tance in engineering product design and development. Hence, considerable
advances have been made in the field of reliability-based design optimization
(RBDO), resulting in new techniques for analyzing and improving the reliability of
an engineered system, while taking into account various sources of uncertainty
(e.g., material properties, loads, and geometric tolerances). Additionally, advanced
maintenance strategies have been developed to help ensure systems operate reliably
throughout their lifetime. This chapter introduces basic concepts of reliability,
provides an overview of the history of reliability engineering, presents the way
reliability efforts can be integrated into product design and development, and
provides a framework for the material that will be covered in the subsequent
chapters.

1.1 Concept of Reliability

Failures of engineered systems cause significant economic and societal losses.
Although today’s U.S. industry spends more than $200 billion each year on reli-
ability and maintenance [1], catastrophic unexpected failures of engineered systems
still take place due to the ever-growing system complexity and increasing levels of
stress (e.g., high pressure, high temperature, and high irradiation field) imposed on
these systems. The rapidly increasing failure costs, along with stringent reliability
and safety requirements, have resulted in considerable research efforts directed
towards the fields of reliability, risk, and maintainability, which, in turn, has led to
significant research advances in these fields. The practice of reliability engineering
not only aims at designing an engineered system that performs its required function
without failure at the very beginning of operation (i.e., t = 0), but also focuses on
maintaining the functionality of the system and avoiding catastrophic failure under
stated conditions for a specified period of time (i.e., t > 0). Due to the existence of
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various uncertainty sources (e.g., material properties, loads, operating conditions),
an event in which a specific system performs its required function under stated
conditions for a specified period of time should be treated as a random phe-
nomenon, the characterization of which requires the use of the methods of proba-
bility and statistics. The probability of this event is referred to as the system’s
reliability, which, from the perspective of statistics, can be described as the ratio of
the number of systems that successfully perform their required functions to the
number of all statistically identical systems (here, we assume that there are an
infinite number of systems).

In reliability or risk assessment of engineered systems, probability and statistics
are both important, relevant, and useful subjects. A clear distinction must be drawn
between the two subjects in order to promote a better understanding.

• Probability is primarily a theory-oriented branch of mathematics. Probability
involves computation of the likelihood of specific events. It enables us to
analyze consequences under strict assumptions.

• Statistics is primarily an application-oriented branch of mathematics. Statistics
focuses on the analysis of the frequency of past events (or quantification of
uncertainty based on available observations from the real world). Statistics can
be used to set up appropriate assumptions for probability analysis.

In summary, in this context, reliability is a probability, the quantification of which
in the real-world requires the use of statistics. The elaboration above clarifies the
main issue we attempt to address in this book, specifically: How can reliability be
analyzed using probability and statistical methods?

The term “reliability,” based on the temporal characteristic, can be categorized
into the following two types:

(i) Time-independent reliability—referring to the probability that a system’s
performance (e.g., fatigue, corrosion, and fracture) meets its marginal value (or
requirement) under uncertainty at the very beginning of operation (t = 0); and

(ii) Time-dependent reliability—referring to the probability that the system meets
this requirement for a stated period of time over the system’s expected lifespan
(t > 0).

It should be noted that the concept of time-independent reliability is mainly used for
designing an engineered system in a way that ensures a high built-in reliability;
whereas, the concept of time-dependent reliability is often employed to design an
engineered system and/or its affiliated PHM system to attain a high operational
reliability. The purpose of this book is to present advanced methods and tools that
can be used to quantify these two types of reliability, as well as to introduce
techniques and ways that can be leveraged to eliminate or avoid failure, or reduce
the probability of failure to an acceptable level. The ultimate goal of this field is to
enable engineered systems to achieve and sustain near-zero breakdown
performance.

2 1 Basic Concepts of Reliability
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1.2 History of Reliability Engineering

Reliability is an important attribute of any modern engineered system. The use of
“reliability” can be traced back to the year 1816, when an English poet Samuel
Taylor Coleridge, for the first time, coined the word “reliability” in praise of his
friend [2] in the following lines:

… he inflicts none of those small pains and discomforts which irregular men scatter about
them, and which in the aggregate so often become formidable obstacles both to happiness
and utility; while on the contrary he bestows all the pleasures, and inspires all that ease of
mind on those around him or connected with him, which perfect consistency, and (if such a
word might be framed) absolute reliability …

Even since this initial “apologetic” beginning, reliability has grown into an
omnipresent attribute that plays an essential role in the safe and effective operation
of almost any modern engineered system. The persuasive nature of reliability in the
common public and academic community cannot be overstated. In fact, a quick
search of the word “reliability” with Google results in over 100 million results
found on the web [3].

From 1816 through 2015, the occurrence of several key events and develop-
ments has led to the establishment of reliability engineering as a scientific disci-
pline. This scientific discipline started to be established in the mid-1950s and
subsequently maintained rapid development through tremendous support from a
vast community of academia, industry, and government constituents. Despite
numerous social, cultural, and technological achievements enabled by reliability
engineering, many challenges still await in the future. In what follows, we briefly
review key events and developments in the chronological history of reliability
engineering.

Our review starts before the first use of the word “reliability” and points out the
essential theoretical foundation of reliability, i.e., the theory of probability and
statistics, which has supported the establishment of reliability engineering as a
scientific discipline. The theory was initially developed in 1600s to address a series
of questions and interests in gaming and gambling by Blaise Pascal and Pierre de
Fermat [3]. In the 1800s, Laplace further expanded the application domain of this
theory into many practical problems. In addition to probability and statistics as the
theoretical enabler for the emergence of reliability engineering, the concept of mass
production for standardized parts (rifle manufacturing by the Springfield armory in
1795 and Ford Model T car production in 1913) also played an essential role as a
practical enabler [3].

Besides these two enablers, the catalyst for the rise of reliability engineering has
been recognized as the vacuum tube, or more specifically, the triode invented by
Lee de Forest in 1906. By initializing the electronic revolution, the vacuum tube led
to a series of applications such as the radio, television, and radar. The vacuum tube,
which was deemed as the active element contributing to the victory of the Allies in
World War II, was the primary source of equipment failure due to its much more
(about four times more) frequent occurrence of failure than all other equipment.

1.2 History of Reliability Engineering 3
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After the war, these failure events motivated the US Department of Defense to
organize investigations into these events, which eventually led to the emergence of
reliability engineering as a scientific discipline in the 1950s. This new discipline
was, for the first time, consolidated and synthesized in the Advisory Group on
Reliability of Electronic Equipment (AGREE) report in 1957. The AGREE was
jointly established in 1952 between the Department of Defense and the American
Electronics Industry for the following missions [4]:

(1) To recommend measures that would result in equipment that is more reliable;
(2) To help implement reliability programs in government and civilian agencies;
(3) To disseminate a better education on reliability.

With the objective to achieve higher reliability, military-funded projects were
launched and a great deal of effort was devoted to failure data collection and root
cause analysis. Furthermore, the specification of quantitative reliability require-
ments emerged as the beginning of a contractual aspect of reliability. These relia-
bility requirements necessitated the development of reliability prediction techniques
to estimate and predict the reliability of a component before it was built and tested.
The milestone of this development was the publication of a major report (TR-1100)
titled “Reliability Stress Assessment for Electronic Equipment” by the Radio
Corporation of America, a major manufacturer of vacuum tubes. Analytical models
for estimating component failure rates were introduced in the report, which then
facilitated the publication of the influential military standard MH-217 in 1961. This
standard is still being used today for reliability prediction [5]. A timeline of the
aforementioned key events that contributed to the emergence of reliability engi-
neering is shown in Fig. 1.1.

In the 1960s, the decade of the first development phase of reliability engineering,
the discipline proceeded along two tracks [3]:

(1) Increased specialization in the discipline, consisting of increased sophistication
of statistical techniques (e.g., redundancy modeling, Bayesian statistics,
Markov chains), the emergence of the discipline of Reliability Physics to
identify and model physical causes of failure, and the development of a separate
subject, Structural Reliability, to assess the structural integrity of buildings,
bridges, and other construction;

1600 1800 2000

Birth of Probability & 
Statistics (Pascal & Fermat, 
1654)

Mass production 
(Ford car, 1913)

Invention of vacuum tube
Start of electronic revolution
(Forest, 1906)

Theoretical enabler Catalyst

Time

Event

Role

1950

AGREE report published
Birth of reliability engineering
(AGREE, 1957)

Practical 
enabler Consolidator & synthesizer

Fig. 1.1 Timeline of key events leading to the birth of reliability engineering
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(2) Shifting of the focus from component reliability to system reliability to deal
with increasingly complex engineered systems (e.g., ICBMs, the swing-wing
F-111, the US space shuttle).

The 1970s witnessed work in three broad areas that characterized the develop-
ment of reliability engineering:

(1) Increased interest in system reliability and safety of complex engineered sys-
tems (e.g., nuclear power plants [6]);

(2) A new focus on software reliability, due to the ever-increasing reliance on
software in many safety-critical systems [7];

(3) Design of an incentive program, Reliability Improvement Warranty, to foster
improvements in reliability.

During the last three and a half decades, from 1980 to 2015, significant technical
advances and practical applications have been achieved by academia, government,
industry and/or multilateral collaboration of these stakeholders, with an aim of
addressing the challenges posed by the increasing complexity of modern engineered
systems. An increasing number of publications on reliability engineering can be
found in well-known journals, such as IEEE Transactions on Reliability, and
Reliability Engineering & Systems Safety. These efforts and developments have
enabled reliability engineering to become a well-established, multidisciplinary field
that endeavors to address the following challenging questions [8]:

(1) Why does a system fail? This question is studied by analyzing failure causes
and mechanisms and identifying failure consequences.

(2) How can reliable systems be designed? This is studied by conducting reliability
analysis, testing, and design optimization.

(3) How can high operational reliability be achieved throughout a system’s
life-cycle? This question is studied by developing and implementing health
monitoring, diagnostics, and prognostics systems.

This book attempts to address the second and third questions from the per-
spective of engineering design. Our focus will be placed on reliability-based design
considering various sources of uncertainty, i.e., addressing the second question. The
emerging discipline of prognostics and health management (PHM), which has
received increasing attention from the reliability community, will be briefly dis-
cussed to address the third question.

1.3 Reliability Practices in a Product’s Life-Cycle

Reliability engineering has been widely recognized as an important discipline that
is practiced throughout the life-cycle of a product. The responsibilities of a relia-
bility engineer in product design and development are specified by the famous
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military standard MIL-STD-785, Reliability Program for Systems and Equipment
Development and Production, as follows:

Tasks shall focus on the prevention, detection, and correction of reliability design defi-
ciencies, weak parts, workmanship defects. Reliability engineering shall be an integral part
of the item design process, including design changes. The means by which reliability
engineering contributes to the design, and the level of authority and constraints on the
engineering discipline, shall be identified in the reliability program plan. An efficient
reliability program shall stress early investment in reliability engineering tasks to avoid
subsequent costs and schedule delays

The statements above suggest that reliability engineering be treated as an integral
part of product development, rather than as a separate activity with little to no
interaction with other development activities [9]. The flowchart of a product reli-
ability program is presented in Fig. 1.2, where five reliability-related tasks are
integrated into three major phases of the new product development process,
specifically: (i) concept phase (Tasks I and II), (ii) design phase (Tasks III and IV),
and (iii) production phase (Task V).

Tasks TechniquesObjectives

Product Reliability Program (Task I)

Goal Setting (Task II)

Tradeoff Analysis
Customer Expectation
Reliability Allocation

Project Requirements

Market Share
Competition
Cost and Risks

Tradeoff Analysis

Cost of Reliability 
Risk of Unreliability
Customer Expectation

Reliability-Based Design 
(Task III)

Create Product
Reliability Analysis

Iterative Refinement

Optimal Cost/Reliability 

Minimum Cost
Reliability Constraints

Reliability Training

Reliability Analysis

Computer Model: CAD/FEA
Model Validation
RBD, FTA and FMEA
Statistical Inference

Reliability Testing (Task IV)

DOE and HALT
Test Data Analysis

Testing and Analysis

DOE, HALT and FRACAS
Statistical Regression

Production (Task V)

Production Quality Control
Statistical Data Analysis

Production Quality Control

HASS, SPC and FRACAS
Sampling and Analysis

Reliability Requirement

Operation Conditions
Run-to-Failure Lifetime

Market Requirement

Manufacturing Quality
Quality Training

Fig. 1.2 Overview of product reliability plan with specific tasks. Acronyms are defined as
follows: DOE, Design of Experiment; HALT, Highly Accelerated Life Testing; CAD,
Computer-Aided Design; FEA, Finite Element Analysis; RBD, Reliability Block
Diagram; FTA, Fault Tree Analysis; FMEA, Failure Modes and Effects Analysis; FRACAS,
Failure Report and Corrective Action System; HASS, Highly Accelerated Stress Screening; and
SPC, Statistical Process Control
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Each of the five tasks is briefly discussed as follows:
Task I—Creating a Product Reliability Plan: To integrate the reliability effort

into the new product development process, an organization should create a product
reliability plan, which clearly specifies all activities of the reliability program, along
with agreed-upon responsibilities for completing and reporting all tasks. The pro-
duct reliability plan can be viewed as a comprehensive record of mandatory pro-
cedures that provide discipline and accountability for the reliability effort.
A well-prepared reliability plan enhances the organization’s confidence in its
competence to accomplish the specified tasks, and provides a clear guide for the
product development team to manage the reliability.

Task II—Setting a Reliability Goal: The concept phase identifies market-driven
product features (e.g., cost targets, forecasted demand, and essential product
functions), defines a set of design requirements on the basis of the product features,
and develops a design concept to meet these requirements. During the concept
phase, the reliability engineer in the product development team must establish a
fully stated reliability goal. The reliability goal must contain three components,
listed as follows [9]:

(1) A definition of failure based on the product’s function, which covers all relevant
failure modes.

(2) A description of the use conditions under which the product will be stored,
transported, operated, and maintained.

(3) A statement of the reliability requirements, and/or a statement of the most
critical failure modes.

Reliability goal setting should take into account customer expectations and
market status, and achieve a good balance between the cost of reliability and the
risk of unreliability. Then, the system-level reliability goal is allocated to
subsystem-level and component-level reliability goals such that meaningful goals
and responsibilities are defined for individual contributors. A clearly stated relia-
bility goal allows team members to hold consistent views about the reliability, and
to comprehend the importance of reliability while making design or production
decisions [10]. A clearly defined reliability goal also ensures that appropriate time
and resources are spent on reliability during the concept, design, and manufacturing
phases of the product life-cycle. Furthermore, the reliability goal, stated in a way
that is measureable, allows the leadership team to track progress toward the time
when customers’ expectations of reliability are met.

Task III—Conducting Reliability-Based Design: During the design phase, the
reliability and/or design engineers apply various design methods and techniques to
enhance the ultimate product reliability. The task of designing reliability into the
product, called reliability-based design, often entails the development and valida-
tion of a reliability model for the product. This generally consists of three major
steps: (i) developing a mathematical or computer simulation model of the physical
system (i.e., the product); (ii) validating the developed model using experimental
data [11]; and (iii) evaluating the reliability of the product using reliability analysis
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techniques (e.g., a reliability block diagram [12] and statistical inference [13]). The
reliability model can be extended by incorporating the effects of operating condi-
tions and environmental factors on product reliability. The reliability model not
only provides valuable information about the reliability of a design, but also paves
the way for reliability-based design optimization (RBDO). In RBDO, the tech-
niques of reliability analysis and design optimization are integrated to develop
reliability-based design methodologies that offer probabilistic approaches to engi-
neering design. Reliability-based design attempts to find the optimum design of an
engineered product that minimizes the cost and satisfies a target level of reliability,
while accounting for uncertainty in parameters and design variables [14]. Once
prototype units are built based on the optimal design derived from RBDO, relia-
bility testing can be performed to gain more insights into the reliability of the
design.

Task IV—Performing Reliability Testing: The design of a reliable product
entails a carefully designed and executed test plan. The plan should place an
emphasis on accelerated life testing (ALT) and highly accelerated life testing
(HALT), both of which expose a product to environmental stresses (e.g., temper-
ature, pressure, and loading) above what the product experiences in normal use, in
order to stimulate failure to occur more quickly than in actual use. ALT/HALT
serve as a formal process to measure and/or improve product reliability in a timely
and cost-effective manner. They guarantee a proportional reduction in the time to
market as well as greatly improved reliability [9]. Efforts should be devoted to
planning robust reliability testing that takes into account various operating condi-
tions using the design of experiment (DOE) technique. Reliability testing should be
integrated with reliability-based design (Task III) in two aspects. First, all failures
observed during reliability testing should be investigated and documented using the
failure report and corrective action system (FRACAS), and the actual root cause of
failure should be fed into reliability-based design as design feedback for reliability
improvement. Second, the testing results should be used to assess and improve the
validity of the reliability model developed and used in Task III. Note that, in
addition to reliability testing, field return and warranty data can be an invaluable
source of information in identifying and addressing potential reliability problems to
improve the design.

Task V—Controlling Production Quality: During the manufacturing phase, the
reliability engineer must conduct quality control by incorporating statistical process
control (SPC). If the manufacturing process is not adequately tracked using SPC
techniques, the relatively large uncertainty inherent in the manufacturing process is
likely to cause manufacturing-induced unreliability. To reduce the magnitude of
manufacturing uncertainty, use of the SPC technique is suggested. SPC uses sta-
tistical monitoring to measure and control the uncertainty in the manufacturing
process. Integrating SPC into the manufacturing process requires the following four
steps: (i) selecting key personnel (e.g., the quality control manager) for SPC skill
training; (ii) conducting sensitivity analysis to identify critical process parameters
that significantly affect the product quality; (iii) deploying hardware and software
for SPC; and (iv) investigating the cause thoroughly if a large uncertainty is
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observed. The SPC provides the manufacturing team with the ability to identify
specific causes of large variations and to make process improvements for higher
product reliability. In addition, through proper rework on products that are detected
to have defects, the manufacturing line can output a larger number of qualified
products given the same amount of cost. Thus, greater revenue can be achieved.

In the last decade or so, reliability engineering has been extending its domain of
application to sensory-based health monitoring, diagnostics, and prognostics.
A tremendous amount of research efforts have been devoted to this extension, and
this stream of research is centered on utilizing sensory signals acquired from an
engineered system to monitor the health condition and predict the remaining useful
life of the system over its operational lifetime. This is treated as Task VI, and is one
of the major focuses of this book.

This health information provides an advance warning of potential failures and a
window of opportunity for implementing measures to avert these failures.

1.4 Outline of Following Chapters

This book focuses on exploring the fundamentals, implementation, and applications
of probabilistic analysis and design methods for improving the reliability of engi-
neered systems. Specifically, it aims to address, from the perspective of engineering
design, the following questions: (i) How can an engineered system be designed with
near-zero failure probability during product development? and (ii) How can failures
be anticipated and prevented during system operation? The first question can be
dealt with by conducting reliability-based design, which encompasses reliability
analysis, testing, and design optimization (Tasks III and IV). Addressing this
question is the focus of Chaps. 4–7 of this book. Chapter 4 presents the funda-
mentals of reliability analysis, including the concepts and formulations of
time-independent and time-dependent reliability analyses. Chapter 5 introduces the
state-of-the-art techniques for time-independent reliability analysis, including the
first- or second order reliability methods (FORM/SORM), direct or smart Monte
Carlo simulation (MCS), and the emerging stochastic response surface methods.
Chapter 6 is devoted to explaining how to design a reliable engineered system by
performing RBDO. Chapter 7 discusses several newly developed techniques for
time-dependent reliability analysis.

The second question can be answered using sensor-based health monitoring,
diagnostic, and prognostic techniques (Task VI). The development of these tech-
niques has led to the emergence of a new discipline, prognostics and health man-
agement (PHM). In the last decade or so, PHM has been successfully applied to
many engineered systems to assess the health conditions of these systems under
actual operating conditions and to predict the remaining useful life of a system over
its lifetime. This health information provides an advance warning of potential
failures and a window of opportunity for implementing measures to avert these
failures. Chapter 8 discusses the current state-of-the-art techniques and approaches
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in this emerging discipline that enable optimal design of sensor networks for fault
detection, effective extraction of health-relevant information from sensory signals,
and robust prediction of remaining useful life.
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Chapter 2
Fundamentals of Probability Theory

Probability theory is a mathematical discipline that investigates possible outcomes
of repeated experiments and a long-run relative frequency of these outcomes. The
word “probability” generally refers to the chance of a specific event occurring,
taking values between zero (impossible) and one (certain). Probability theory
enables the analysis of reliability, i.e. the probability that a system performance
meets its marginal value (or requirement) under uncertainty at the very beginning of
operation (time-independent reliability) or during its lifetime (time-dependent
reliability). In this chapter, we briefly summarize fundamental probability theory
with the aim of providing a sufficient background in probability to enable under-
standing and use of techniques and methods found in later chapters.

2.1 Probability Concepts

The basic setting of a probability model is a random experiment that produces
different possible outcomes. In this setting, a probability model is formulated in a
complete probability space X;A;Pð Þ; where X is a sample space, A is an event
field on X, and P is a probability measure function P: A ! [0, 1]. Depending on
the setting of a random experiment, a sample space can be countably finite,
countably infinite, or uncountably infinite. If we treat rolling a die once as an
experiment and the resulting die number as the outcome, the sample space X = {1,
2, 3, 4, 5, 6}, which is countably finite. If we treat rolling a die multiple times until
the occurrence of an even number as an experiment and the resulting number of
times rolled as the outcome, the sample space X = {1, 2, …, +∞}, which is
countably infinite. If we treat running an engineered system until its failure as an
experiment, and the resulting life as the outcome, the sample space X = (0, +∞),
which is uncountably infinite. Another example of an uncountably infinite sample
space is the fatigue test, where the sample data can be obtained to derive the
physical quantities used in the strain-life equation, as shown in Fig. 2.1.
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An event E, as a member of the event field A and a subset of X, can be defined
as a collection of possible outcomes of a random experiment. Two special events
exist: the whole sample space X is defined as the certain event; the empty set Ø is
called the null event. An event E is assigned with a probability P(E) that satisfies
the following property: 0 � P(E) � 1. In probability theory, the probability P
(E) is the chance that the event E is true. In practice, P(E) refers to the limiting value
that the relative frequency of the occurrence of E will approach if the random
experiment is repeated an infinite number of times under identical conditions. This
statement is referred to as the law of large numbers. The convergence of the relative
frequency can be demonstrated by repeating a random experiment of tossing a coin
and computing the relative frequency of a result of “heads.” The process is
graphically shown in Fig. 2.2, where the relative frequency converges to 0.5 or the
probability of “heads.” It then becomes reasonable to treat the relative frequency at
the time of any rolling, or in general, at any number of repeated experiments, as an
estimate of P(E).

With an either finite or countably infinite sample space X, every possible out-
come s is assigned with a probability p(s). If every possible outcome s is a real
number, s then becomes a discrete random variable and we use a probability mass
function to represent p(s). In such cases, the probability of any event E, consisting
of a collection of s, can be computed as

P Eð Þ ¼
X
s2E

p sð Þ ð2:1Þ

With the event E being a countable union of disjoint sets s, the relation above can
be derived from the addition theorem for mutually exclusive events. This will be
explained in detail in a subsequent section. On the other hand, if the sample space X
is uncountably infinite and s represents a real value, s can then be treated as a
continuous random variable. In this case, a probability density function (PDF) is
used to represent p(s).

Fig. 2.1 Fatigue tests and sample data set
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2.2 Axioms and Theorems of Probability Theory

This section presents the basic axioms and theorems of probability theory that form
the theoretical basis for probability analysis.

2.2.1 Basic Axioms

As mentioned in Sect. 2.1, the probability measure function P, defined on X, maps
any event E in A to a real number. The following basic axioms apply to this real
number:

Axiom 1: P(E) � 0 for any E � X.
Axiom 2: P(X) = 1.
Axiom 3: If E1, E2, … are mutually exclusive it follows that

P
[1
i¼1

Ei

 !
¼
X1
i¼1

P Eið Þ ð2:2Þ

Other useful rules that follow from Axioms 1–3 can be expressed as follows:

P £ð Þ ¼ 0

P E1ð Þ�P E2ð Þ if E1�E2

P �E1ð Þ ¼ 1� P E1ð Þ
ð2:3Þ

Fig. 2.2 Convergence of the
relative frequency of heads
when tossing a coin ns times
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The third rule of the equation above can be proven using Axioms 2 and 3.
Applications of these axioms and rules lead to useful theorems for the calculation of
the probability of events. These will be detailed in the next subsection.

2.2.2 Addition Theorems

Events E1, E2,…, En are mutually exclusive if the occurrence of any event excludes
the occurrence of the other n − 1 events. In other words, any two events Ei and Ej in
this set of events cannot occur at the same time, or are mutually exclusive. This can
be mathematically expressed as Ei\Ej = Ø. For example, a battery cell could fail
due to internal short circuit or over-discharge. The events E1 = {failure due to
internal short circuit} and E2 = {failure due to over-discharge} can be treated as
mutually exclusive due to the impossibility of the simultaneous occurrence of the
two events. It follows from Axiom 3 (Sect. 2.2.1) that

P E1 [E2ð Þ ¼ P E1ð ÞþP E2ð Þ ð2:4Þ

In general, if events E1, E2, …, En are mutually exclusive, the following addition
theorem applies:

P
[n
i¼1

Ei

 !
¼
Xn
i¼1

P Eið Þ ð2:5Þ

With this knowledge of mutually exclusive events in place, let us now investi-
gate a general case where the mutually exclusive assumption may not hold. The
probability that event E1, event E2, or both events occur is computed based on the
union of two events, expressed as

P E1 [E2ð Þ ¼ P E1ð ÞþP E2ð Þ � P E1 \E2ð Þ ð2:6Þ

For the case of n events E1, E2, …, En, the probability that at least one of them
occurs can be derived by generalizing Eq. (2.6) as

P
[n
i¼1

Ei

 !
¼
Xn
j¼1

�1ð Þjþ 1Pj withPj ¼
X

1� i1\���\ij � n

P
\

k2 i1;...;ijf g
Ek

0
B@

1
CA ð2:7Þ

The equation above can be derived by first grouping (n − 1) events as a single
event, applying Eq. (2.6) to the resulting two events, and then repeating the same
process (n − 1) times.
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Example 2.1 Suppose that among a set of 50 battery cells, 1 cell suffers from
damage due to an internal short circuit and 2 cells suffer from damage due to
overvoltage. If we randomly choose one cell from the set, what is the
probability of getting a defective cell?

Solution
Since the events E1 = {get a cell with an internal short circuit} and E2 = {get
a cell with an overvoltage} are mutually exclusive, we can compute the
probability of their union using Eq. (2.4) as

P E1 [E2ð Þ ¼ P E1ð ÞþP E2ð Þ
¼ 1

50
þ 2

50
¼ 3

50

2.2.3 Multiplication Theorem

Events E1 and E2 are independent if the occurrence of one event does not have any
influence on that of the other. In such cases, the probability of a joint event can be
computed as the multiplication of the probabilities of individual events, expressed
as

P E1 \E2ð Þ ¼ P E1ð Þ � P E2ð Þ ð2:8Þ

For a general case where events E1 and E2 may not be independent, the probability
of the joint event can be expressed as

P E1 \E2ð Þ ¼ P E1ð Þ � P E2jE1ð Þ ¼ P E2ð Þ � P E1jE2ð Þ ð2:9Þ

In the equations above, P(E1|E2) and P(E2|E1) are conditional probabilities that
assume that E2 and E1 have occurred, respectively.

2.2.4 Total Probability Theorem

Assuming events E1, E2, …, En are mutually exclusive (Ei\Ej = Ø for all
i 6¼ j) and collectively exhaustive (the sum of probabilities of all events equals one),
we then divide the probability of an arbitrary event EA into the probabilities of
n mutually exclusive events, expressed as

2.2 Axioms and Theorems of Probability Theory 15
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P EAð Þ ¼
Xn
i¼1

P EA \Eið Þ ¼
Xn
i¼1

P Eið ÞP EAjEið Þ ð2:10Þ

We call this equation the total probability theorem. This theorem further leads to
Bayes’ theorem that is used to compute the posterior probability of an event as a
function of the priori probability and likelihood. Bayes’ theorem will be discussed
in detail in Chap. 3.

2.3 Random Variables and Univariate Distribution
Functions

A random variable is a function that maps events in the sample space X into
outcomes in the real number space R where the outcomes can be real or integer,
continuous or discrete, success or failure, etc. The random variable often written as
X: X ! R, is useful in quantifying uncertainty mathematically. In what follows, we
will introduce two types of random variables, namely discrete random variables and
continuous random variables.

2.3.1 Discrete Random Variables

A discrete random variable X is a function that maps events in a sample space into
to a finite or countably infinite set of real numbers. An example of a discrete
random variable can be found in specimen tensile tests with 10 kN tensile force. If
we repeat this test 100 times with each test employing 20 specimens, the number of
failed specimens in each tensile test can be treated as a discrete random variable.
This variable can only represent a finite set of discrete integer values between 0 and
20. In general, a discrete random variable can only represent a value at a finite or
infinite set of discrete points. This means that the probability of such a variable can
only be computed at these discrete points. The randomness in this variable is
described using the so-called probability mass function (PMF), denoted as pX(x).
Assuming that X can be any of a series of discrete values x1, x2, …, xM, we can then
define the PMF of X as

pX xkð Þ ¼ P X ¼ xkð Þ; with
XM
k¼1

pX xkð Þ ¼ 1 ð2:11Þ

Note that the PMF is a discrete function that consists of a series of discrete values,
as shown in Fig. 2.3a. The cumulative distribution function (CDF) of a discrete
random variable can be computed by adding all PMFs together. The CDF takes the
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form of a step function, as shown in Fig. 2.3b. Mathematically, the CDF can be
expressed as

FX xð Þ ¼ P X � xð Þ ¼
X
xk � x

pX xkð Þ ð2:12Þ

In the next chapter, we will introduce several commonly used discrete distributions.

Example 2.2 Let X be the number of heads that appear if a coin is tossed
three times sequentially. Compute the PMF of X.

Solution
If H and T represent head and tail, respectively, the sample space for this
experiment can be expressed as X = {HHH, HHT, HTH, THH, HTT, THT,
TTH, TTT}. First, consider the event {X = 0}, which can be easily mapped to
the outcome w = TTT. The probability of {X = 0} or pX(0) can be computed
as

pX 0ð Þ ¼ P X ¼ 0f gð Þ ¼ P w ¼ TTTf gð Þ ¼ 1
2

� �3

¼ 1
8

In the calculation above, we use the multiplication theorem for independent
events, as introduced in Eq. (2.8). Similarly, we can compute the other PMF
values

Fig. 2.3 An example of discrete random variables: a PMF; b CDF
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pX 1ð Þ ¼ P X ¼ 1f gð Þ ¼ P w 2 HTT, THT, TTHf gf gð Þ ¼ 3
1
2

� �3

¼ 3
8

pX 2ð Þ ¼ P X ¼ 2f gð Þ ¼ P w 2 THH, HTH, HHTf gf gð Þ ¼ 3
1
2

� �3

¼ 3
8

pX 3ð Þ ¼ P X ¼ 3f gð Þ ¼ P w ¼ HHHf gð Þ ¼ 1
2

� �3

¼ 1
8

The computations of pX(1) and pX(2) use the addition theorem for mutually
exclusive events and the multiplication theorem for independent events, as
introduced earlier in the chapter.

2.3.2 Continuous Random Variables

Let us consider again the outcome of an experiment. This time the experiment is
conducted to test an LED light bulb until it burns out. The random variable
X represents the bulb’s lifetime in hours. Since X can take any positive real value, it
does not make sense to treat X as a discrete random variable. As a random variable
that can represent continuous values, X should be treated as a continuous random
variable, and its randomness can be modeled using a PDF fX(x). Note that the PDF
at any point only provides information on density, not mass. Only integration
(volume) of the PDF gives information on mass (probability). Thus, we become
interested in computing the probability that the outcome of X falls into a specific
interval (x1, x2]. This probability can be computed as

P x1\X � x2ð Þ ¼
Zx2
x1

fX xð Þdx ð2:13Þ

Based on the equation above, we can calculate the CDF FX(x) by setting x1 and x2 to
−∞ and x, respectively. This can be expressed as

FX xð Þ ¼ P X� xð Þ ¼
Zx
�1

fX xð Þdx ð2:14Þ

The PDF fX(x) has a relationship with the CDF FX(x) almost everywhere, expressed
as

18 2 Fundamentals of Probability Theory



www.manaraa.com

fX xð Þ ¼ dFX xð Þ
dx

ð2:15Þ

The relationship between the PDF fX(x) and CDF FX(x) of a continuous random
variable is shown in Fig. 2.4, where it can be observed that Eq. (2.13) can be
equivalently written as

P x1\X� x2ð Þ ¼ FX x2ð Þ � FX x1ð Þ ð2:16Þ

To satisfy the three axioms in Sect. 2.2.1, a CDF FX(x) must possess the following
properties:

(1) F is non-decreasing, i.e., FX(x1) � FX(x2) whenever x1 > x2.
(2) F is normalized, i.e., FX(−∞) = 0, FX(+∞) = 1.
(3) F is right-continuous, i.e.,

lim
e#0

FX xþ eð Þ ¼ FX xð Þ ð2:17Þ

Similarly, a PDF fX(x) must possess the following properties:

X

F X
(x
)

X

f X
(x
) x1 x2

x1 x20

0.1

0.2

0.3

0

0.2

0.8

0.4

0.6

1.0

( ) ( )
2

1
1 2

x

Xx
P x X x f x dx< ≤ = ∫

( ) ( ) ( )1 2 2 1X XP x X x F x F x< ≤ = −

Fig. 2.4 Relationship
between the PDF fX(x) and
CDF FX(x) of a continuous
random variable
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(1) f is non-negative, i.e., fX(x) � 0 everywhere.
(2) f is normalized, i.e.,

Zþ1

�1
fX xð Þdx ¼ 1 ð2:18Þ

Example 2.3 Assume that the remaining useful life (in days) of an engineered
system follows the following distribution function

fX xð Þ ¼
2x

1þ x2ð Þ2 ; for x� 0

0; for x\0

�

(1) Show that fX(x) satisfies the requirements of a PDF.
(2) Compute P(3 � X � 5).
(3) If we define the reliability of this system as the probability of this system

to operate for at least 5 days, calculate the reliability.

Solution

(1) It is clear that fX(x) � 0 for all x 2 R. Then, an integral is computed

Zþ1

�1
fX xð Þdx ¼

Zþ1

0

2x

1þ x2ð Þ2 dx ¼u¼1þ x2
Zþ1

1

1
u2

du ¼ 1

(2) Compute the probability P(3 � X � 5) using Eq. (2.13) as

P 3�X� 5ð Þ ¼
Z5
3

2x

1þ x2ð Þ2 dx ¼u¼1þ x2
Z26
10

1
u2

du ¼ � 1
u

����26
10
¼ 4

65

(3) The reliability can be written as P(X � 5). This probability can be
computed using Eq. (2.13) as

P X� 5ð Þ ¼
Zþ1

5

2x

1þ x2ð Þ2 dx ¼u¼1þ x2
Zþ1

26

1
u2

du ¼ � 1
u

����þ1

26
¼ 1

26

20 2 Fundamentals of Probability Theory



www.manaraa.com

2.4 Statistical Moments of Random Variables

In Sect. 2.3, we learned that the randomness in a random variable can be exactly
modeled using a distribution function. In engineering practice, we also need to
characterize the statistical nature of a random variable with numerical parameters that
can be estimated from available samples. Such numerical parameters include mean,
standard deviation, skewness, kurtosis, etc.; these are known as statistical moments.

2.4.1 Mean

Let us first consider a discrete random variable X that can take a series of discrete
values x1, x2, …, xM with probabilities pX(x1), pX(x2), …, pX(xM). The mean lX, or
expected value E(X), can be defined as

E Xð Þ ¼
XM
k¼1

xkpX xkð Þ ð2:19Þ

Note that if we have a set of independent and identically distributed (i.i.d.) random
samples, the arithmetic mean of these samples approaches the expected value in
Eq. (2.19) as the number of samples approaches infinity. The proof of this statement
can be derived based on the strong law of large numbers, which is omitted here. In
reliability analysis, we are particularly interested in computing the expectation of a
system’s performance. A system’s performance is often a function of several random
variables. If we assume that the input X of a system performance function g(X) is a
discrete random variable, we can calculate the expected value of g(X) as

E g Xð Þð Þ ¼
XM
k¼1

g xkð ÞpX xkð Þ ð2:20Þ

Example 2.4 Consider the discrete random variable in Example 2.2. Compute
its expected value.

Solution
Since X can represent any of the values 0, 1, 2 and 3, its expected value can
be computed as

E Xð Þ ¼
X3
x¼0

x � pX xð Þ ¼ 0 � 1
8
þ 1 � 3

8
þ 2 � 3

8
þ 3 � 1

8
¼ 3

2
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Example 2.5 Assume that the number X of failed power transformers per year
follows the following PMF

pX xð Þ ¼ kxe�k

x!
; x ¼ 0; 1; 2; . . .

Calculate the mean number of failed power transformers per year.

Solution
The calculation of the mean value of X can be expressed as

E Xð Þ ¼
Xþ1

x¼0

x � pX xð Þ

¼
Xþ1

x¼0

x � k
xe�k

x!

¼
Xþ1

x¼1

kxe�k

x� 1ð Þ! ¼l¼x�1
ke�k

Xþ1

l¼0

kl

l!

¼ ke�kek ¼ k

Note: As we will see in Sect. 2.5, the PMF in this example is called a Poisson
distribution, which is useful in modeling randomness in the number of events
occurring in a fixed period of time under the assumptions of occurrence
independence and a constant occurrence rate.

Next, let us consider a continuous random variable X with a PDF fX(x). In
contrast to the discrete case where the expected value is a simple weighted-sum
average, the mean lX, or expected value E(X), in the continuous case is computed
by performing integration as

E Xð Þ ¼
Zþ1

�1
xfX xð Þdx ð2:21Þ

If we treat the integral above as a summation of the multiplications of x and its PDF
value fX(x) over infinitesimally narrow intervals, the expected value of a continuous
random variable can also be regarded as a weighted-sum average, which bears a
resemblance to a discrete random variable. If we assume that the input X of a system
performance function g(X) is a continuous random variable, we can calculate the
expected value of g(X) as
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E g Xð Þð Þ ¼
Zþ1

�1
g xð ÞfX xð Þdx ð2:22Þ

Example 2.6 Assume that a continuous random variable X follows the fol-
lowing distribution function

fX xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
x� l
r

� �2	 


Show that E(X) = l.

Solution
It is equivalent to show that E(X − l) = 0. The expectation can be computed
as

E Xð Þ ¼
Zþ1

�1
x� lð ÞfX xð Þdx

¼
Zþ1

�1
x� lð Þ 1ffiffiffiffiffiffi

2p
p

r
exp � 1

2
x� l
r

� �2	 

dx

¼ 1ffiffiffiffiffiffi
2p

p
Zþ1

�1

x� l
r

exp � 1
2

x� l
r

� �2	 

dx

If we replace the term (x − l)/r with a new variable z, we get

E Xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r

Zþ1

�1
z exp � 1

2
z2

� �
dz

¼ � 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
z2

� �����þ1

�1
¼ 0

Note: As we will see in Sect. 2.5, the PDF in this example is called a
Gaussian or normal distribution—the most widely used continuous
distribution.

In engineering practice, we often don’t know the exact probability distribution of
a random variable but instead we often only have a group of random samples x1, x2,
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…, xM. In such cases, the sample mean can be used as an approximation to the
population mean. The sample mean is expressed as

l̂X ¼ 1
M

XM
k¼1

xk ð2:23Þ

As the number of samples M approaches infinity, the sample mean approaches the
population mean.

2.4.2 Variance

Similar to the mean, the variance is also an expectation. Letting X in Eq. (2.19) be
(X − lX)

2, we can then obtain the expression of the variance of a discrete random
variable X as

Var Xð Þ ¼ E X � lXð Þ2
h i

¼
XM
k¼1

xk � lXð Þ2pX xkð Þ ð2:24Þ

The equation above suggests that the variance is the weighted-sum average of the
squared deviation of X from its mean value lX and that the variance measures the
dispersion of samples in a probabilistic manner.

Replacing X in Eq. (2.21) with (X − lX)
2 gives the expression of the variance of

a continuous random variable X as

Var Xð Þ ¼ E X � lXð Þ2
h i

¼
Zþ1

�1
x� lXð Þ2fX xð Þdx ð2:25Þ

The standard deviation of X is defined as the square root of its variance, denoted by
r.

For a random variable with a non-zero mean, the computation is easier using a
simplified formula for variance, specifically

Var Xð Þ ¼ E X2
� �� E Xð Þð Þ2 ð2:26Þ

which essentially decomposes the calculation of the variance into the calculations of
the expectation of square and of the square of expectation. When there is a larger
number of random samples, x1, x2, …, xM, the sample variance can be computed as

E Xð Þ ¼ 1
M � 1

XM
k¼1

xk � l̂Xð Þ2 ð2:27Þ
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Observe from Eqs. (2.24) and (2.25) that, for both discrete and continuous
random variables, the variance is defined as the expectation of the squared deviation
of the corresponding random variable from its mean value. This definition of
variance can be generalized to the definition of the nth central moment of X,
expressed as E[(X − lX)

n]. The variance is equivalent to the 2nd central moment. In
Sect. 2.4.3, we will introduce two higher-order moments, namely skewness and
kurtosis, which are defined based on the 3rd and 4th central moments, respectively.

Example 2.7 Compute the variance of the continuous random variable X in
Example 2.6.

Solution
According to Eq. (2.25), we can compute the variance of X as

Var Xð Þ ¼ E X � lð Þ2
h i

¼
Zþ1

�1
x� lð Þ2fX xð Þdx

¼
Zþ1

�1
x� lð Þ2 1ffiffiffiffiffiffi

2p
p

r
exp � 1

2
x� l
r

� �2	 

dx

¼ rffiffiffiffiffiffi
2p

p
Zþ1

�1

x� l
r

� �2
exp � 1

2
x� l
r

� �2	 

dx

If we make the same replacement as in Example 2.6, we get

Var Xð Þ ¼ r2ffiffiffiffiffiffi
2p

p
Zþ1

�1
z2 exp � 1

2
z2

� �
dz

¼ � r2ffiffiffiffiffiffi
2p

p
Zþ1

�1
z � d exp � 1

2
z2

� �	 


¼ � r2

2
ffiffiffiffiffiffi
2p

p z exp � 1
2
z2

� �����þ1

�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ r2
1ffiffiffiffiffiffi
2p

p
Zþ1

�1
exp � 1

2
z2

� �
dz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

¼ r2

The fact that first term on the right hand side is zero is due to the faster decay
of exp(−0.5z2) than z. Detailed computation of the second term will be dis-
cussed in the next subsection.
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2.4.3 Skewness and Kurtosis

The skewness of a random variable X, denoted by b1, is defined as the normalized
3rd central moment, expressed as

b1 ¼ E
X � lX
rX

� �3
" #

ð2:28Þ

Skewness measures the asymmetry of the probability distribution of a random
variable. In general, a probability distribution can be positively or negatively
skewed (asymmetric), or evenly distributed (symmetric). A graphical comparison
between positively and negatively skewed PDFs is given in Fig. 2.5. Observe that a
positive skew (see Fig. 2.5a) means a longer tail on the right side of PDF and a
larger area on the left side. Likewise, a negative skew (see Fig. 2.5b) means a
longer tail on the left side of PDF and a larger area on the right side.

The kurtosis of a random variable X, denoted by b2, is defined as the normalized
4th central moment, expressed as

b2 ¼ E
X � lX
rX

� �4
" #

ð2:29Þ

Kurtosis measures the portion of the variance that results from infrequent extreme
deviations. Thus, for a random variable with high kurtosis, a large portion of its
variance is due to infrequent extreme deviations.

The first four statistical moments are named mean, variance, skewness, and
kurtosis, respectively. As will be discussed in later chapters, these moments provide
information regarding the uncertainty of a system’s performance for reliability
analysis and, in some cases, can even help estimate the PDF of the system per-
formance. Furthermore, the two lower-order moments (i.e., mean and variance) are
important quantities used in design problems, such as reliability-based robust
design optimization.

X

f X
(x
)

X

f X
(x
)

(a) (b)

Fig. 2.5 Positively skewed PDF (a) versus negatively skewed PDF (b)
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2.5 Commonly Used Univariate Distribution Functions

In this chapter’s prior sections, we have introduced discrete and continuous random
variables and presented fundamentals of the PMF/PDF and CDF for modeling
randomness in these random variables. In what follows, commonly used univariate
distribution functions will be introduced with an aim to enhance understanding of
probability distributions as well as to provide preliminary information to lay the
foundation for reliability analysis to be introduced in later chapters.

2.5.1 Discrete Probability Distributions

This section introduces three commonly used discrete distributions, namely bino-
mial distribution, Poisson distribution, and geometric distribution.

Binomial Distribution

Recall Example 2.2 where a coin is tossed three times sequentially. The
experiment in this example possesses two properties: (i) only two outcomes (head
and tail) are possible in an experimental trial (tossing a coin); and (ii) repeated trials
are conducted independently with each trial having a constant probability for each
outcome (0.5 for head and 0.5 for tail). If a sequence of n experimental trials
satisfies the two properties and the probability of occurrence of an outcome in each
trial is p0, the number X of occurrences of this outcome follows a binomial dis-
tribution, and its PMF pX(x) can be expressed as

pX x; n; p0ð Þ ¼ C n; xð Þpx0 1� p0ð Þn�x; x ¼ 0; 1; 2; . . .; n ð2:30Þ

where C(n, x) = n!/[x!(n − x)!] is the binomial coefficient and can be interpreted as
the number of different ways that the outcome occurs x times out of n trials. The
equation above can be derived by summing the probabilities of C(n, x) mutually
exclusive events, of which each has a probability of occurrence p0

x(1 − p0)
n − x.

Example 2.8 Reconsider Example 2.2, except here the coin is tossed five
times. Compute the probability of getting at least two heads in five tosses.

Solution
Let X denote the number of heads in five tosses, which follows a binomial
distribution pX(x; 5, 0.5). The probability of {X � 2} can be computed as
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P X � 2f gð Þ ¼ 1� P X� 1f gð Þ
¼ 1� P X ¼ 1f gð Þ � P X ¼ 0f gð Þ
¼ 1� C 5; 1ð Þ � 0:51 � 1� 0:5ð Þ4�C 5; 0ð Þ � 0:50 � 1� 0:5ð Þ5
¼ 1� 0:1563� 0:0313

¼ 0:8125

This calculation uses the rule for the probability of complementary events, as
outlined in Eq. (2.3).

Poisson Distribution

In Example 2.5, we presented the PMF of a discrete random variable X following
the Poisson distribution. It takes the following form

pX xð Þ ¼ kxe�k

x!
; x ¼ 0; 1; 2; . . . ð2:31Þ

The Poisson distribution can be used to model the randomness in the number of
events occurring in a fixed period of time under the assumptions of occurrence
independence and a constant occurrence rate. We have seen from Example 2.5 that
the mean of X is k. It will be shown in Example 2.9 that the variance of X is also k.

The Poisson distribution can be treated as a limiting case of the binomial dis-
tribution. In fact, as the number of trials n ! +∞, the probability of occurrence
p0 ! 0, and np0 = k, the binomial distribution can be well represented by the
Poisson distribution. This can be proved by setting p0 = k/n in Eq. (2.30) and
applying the limit n ! +∞, expressed as

pX x; n; p0ð Þ ¼ lim
n!þ1

n!
x! n� xð Þ!

k
n

� �x

1� k
n

� �n�x	 


¼ lim
n!þ1

n n� 1ð Þ � � � n� xþ 1ð Þ
nx

kx

x!
1� k

n

� �n

1� k
n

� ��x	 


¼ lim
n!þ1 1 1� 1

n

� �
� � � 1� x� 1

n

� �
kx

x!
1� k

n

� �n	 


¼ kx

x!
lim

n!þ1 1� k
n

� �n	 

¼ kxe�k

x!

ð2:32Þ
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Example 2.9 Reconsider Example 2.5. Find the variance of the number of
failed power transformers per year.

Solution
According to Eq. (2.26), the variance of X can be computed as

Var Xð Þ ¼ E X2
� �� E Xð Þð Þ2¼

Xþ1

x¼0

x2 � k
xe�k

x!
� k2

¼
Xþ1

x¼1

x� 1þ 1ð Þ � kxe�k

x� 1ð Þ!� k2

¼
Xþ1

x¼2

kxe�k

x� 2ð Þ!þ
Xþ1

x¼1

kxe�k

x� 1ð Þ!� k2

Applying l = x − 2 and l = x − 1 to the first and second terms, respectively,
we get

Var Xð Þ ¼ k2e�k
Xþ1

l¼0

kl

l!
þ ke�k

Xþ1

l¼0

kl

l!
� k2

¼ k2 þ k� k2 ¼ k

Geometric Distribution

In a sequence of experimental trials, we are often interested in calculating how
many trials have to be conducted until a certain outcome can be observed. For a
Bernoulli sequence of experimental trials, the number X of trials conducted before
the first occurrence of a certain outcome follows a geometric distribution as

pX xð Þ ¼ 1� pð Þx�1p; x ¼ 1; 2; . . . ð2:33Þ

where p is the probability of occurrence in each trial.

Example 2.10 The acceptance scheme for purchasing lots containing a large
number of batteries is to test no more than 75 randomly selected batteries and
to reject a lot if a single battery fails. Assume the probability of a single
battery failure is 0.001.

(1) Compute the probability that a lot is accepted.
(2) Compute the probability that a lot is rejected on the 20th test.
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(3) Compute the probability that a lot is rejected in less than 75 trials.

Solution

(1) The probability of acceptance is equal to the probability of no failure in
75 trials

P NoFailure in 75 Trialsf gð Þ ¼ 0:99975 � 0:9925

(2) The probability that a lot is rejected on the 20th test can computed by
using a geometric distribution with X = 19 and p = 0.001 as

P 20th Failuref gð Þ ¼ 0:99919 � 0:001 � 0:0001

(3) The probability of rejection in less than 75 trials can be calculated
through its complementary events (i.e., failure in the 75th trial and no
failure in 75 trials) as

P Failure in Less Than 75 Trialsf gð Þ ¼ 1� P 75th Failuref gð Þ � P NoFailuref gð Þ
¼ 1� 0:99974 � 0:001� 0:99975 � 0:0074

2.5.2 Continuous Probability Distributions

In reliability analysis, continuous probability distributions are more often used than
discrete probability distributions. This section presents three commonly used con-
tinuous distributions, namely normal distribution, Weibull distribution, and expo-
nential distribution.

Normal Distribution

The most widely used continuous probability distribution is the normal or Gaussian
distribution. The density function of a normal distribution can be expressed as

fX xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
x� l
r

� �2	 

ð2:34Þ

As demonstrated in Example 2.5, l 2 R is the mean and r > 0 is the standard
deviation. Normal PDFs with different means and standard deviations are compared
in Fig. 2.6. As r increases, the width of the PDF increases and, to keep the total
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area as one, the height decreases. The change of the mean only leads to the change
of the center location of the PDF while the shape remains the same.

If l = 0 and r2 = 1, X follows a standard normal distribution, its PDF
fX(x) becomes a standard normal density, and its CDF FX(x) becomes a standard
normal CDF, denoted as U(x). If l 6¼ 0 or r2 6¼ 1, we can use the substitution
z = (x − l)/r to transform the original normal distribution into a standard normal
distribution as

fZ zð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � 1
2
z2

� �
ð2:35Þ

Next, let us verify that the normal PDF fX(x) satisfies the requirements of a PDF.
Clearly, fX(x) > 0 for all x 2 R. We then need to show that the integration of fX(x) is
one. First, we use the substitution z = (x − l)/r to simplify the integration as
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Fig. 2.6 Normal PDFs and
the corresponding CDFs
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Zþ1

�1
fX xð Þdx¼

Zþ1

�1

1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
x� l
r

� �2	 

dx

¼ 1ffiffiffiffiffiffi
2p

p
Zþ1

�1
exp � 1

2
z2

� �
dz

ð2:36Þ

Then the problem becomes the calculation of the following integral

I ¼
Zþ1

�1
exp � 1

2
z2

� �
dz ð2:37Þ

This integral can be converted to a double integral I2 as

I2 ¼
Zþ1

�1
exp � 1

2
x2

� �
dx

0
@

1
A Zþ1

�1
exp � 1

2
z2

� �
dz

0
@

1
A

¼
Zþ1

�1

Zþ1

�1
exp � 1

2
x2 þ z2
� �� �

dxdz

ð2:38Þ

Next, we change Cartesian x-z coordinates to polar r-h coordinates with the sub-
stitutions x = rcosh, z = rsinh and dxdy = rdrdh. In Cartesian coordinates, the
integral is over the entire x-z plane. Equivalently, in polar coordinates, the inte-
gration is over the range of the radius r from 0 to +∞ and the range of the angle h
from 0 to 2p. We then have

I2 ¼
Zþ1

�1
exp � 1

2
x2

� �
dx

0
@

1
A Zþ1

�1
exp � 1

2
z2

� �
dz

0
@

1
A

¼
Zþ1

0

Z2p
0

exp � 1
2
r2

� �
rdhdr

¼ 2p
Zþ1

0

exp � 1
2
r2

� �
rdr

¼ �2p exp � 1
2
r2

� �����þ1

0
¼ 2p

ð2:39Þ

This gives I ¼ ffiffiffiffiffiffi
2p

p
and the integral in Eq. (2.36) then becomes one. By calculating

I, we solve the problem left in Example 2.5.
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Lognormal Distribution

If the logarithm of a continuous random variable X follows a normal distribution,
the random variable follows a lognormal distribution

fX xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
rx

exp � 1
2

ln x� l
r

� �2
" #

ð2:40Þ

Here, x > 0, l > 0 and r > 0. Note that l and r are two lognormal parameters, not
the mean and standard deviation of X. The mean lX, and standard deviation rX of X,
can be computed as

lX ¼ exp lþ r2=2
� �

r2X ¼ er
2 � 1

� �
exp 2lþ r2
� � ð2:41Þ

Similar to the normal case, we can also transform a lognormal random variable to a
standard normal variable by using the substitution z = (ln x − l)/r. We can then
derive the CDF of a lognormal random variable as

FX xð Þ ¼ P X � xð Þ ¼ P
ln X � l

r
� ln x� l

r

� �

¼
Zln x�l

r

�1

1ffiffiffiffiffiffi
2p

p exp � 1
2
z2

� �
dz

¼ U
ln x� l

r

� �
ð2:42Þ

Lognormal PDFs with different means and standard deviations are compared in
Fig. 2.7. As rX increases, the width of the PDF increases and the height decreases.
Unlike the normal distribution, the lognormal distribution can represent values in
(0, +∞) and is unsymmetrical.

Example 2.11 A chemical plant superintendent has standing orders to shut
down the process and make a readjustment whenever the pH of the final
product falls below 6.90 or above 7.10. Assume that sample pH is lognor-
mally distributed with a varying mean lX and a fixed standard deviation
rX = 0.05.

(1) Determine the probability of readjusting when the process is operating as
intended and lX = 7.0.

(2) Determine the probability of failing to readjust (failing to notice the
out-of-range value) when the process is too acidic and the mean pH is
lX = 6.8.
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Solution

(1) We first derive the lognormal parameters by inversely using Eq. (2.41) as

l ¼ ln l2X
� �

= rX þ l2X
� �1=2

r ¼ ln rX=l
2
X þ 1

� �� �1=2
The parameters are l = 1.9454 and r = 0.0319. We then convert the
critical pH values to the corresponding standard normal values as

z1 ¼ ln 6:9� 1:9454
0:0319

¼ �0:4351; z2 ¼ ln 7:1� 1:9454
0:0319

¼ 0:0160

Fig. 2.7 Lognormal PDFs
and the corresponding CDFs
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Then the probability can be computed by using the normal CDF values as

P x� 6:9; or x� 7:1ð Þ ¼ P z� � 0:4351; or z� 0:0160ð Þ
¼ U �0:4351ð ÞþU �0:0160ð Þ � 0:8254

(2) We apply the same procedure to solve this question. First, we compute
the lognormal parameters as l = 1.9164 and r = 0.0329. We then
compute the critical standard normal values as

z1 ¼ ln 6:9� 1:9164
0:0329

¼ 0:4596; z2 ¼ ln 7:1� 1:9454
0:0319

¼ 1:3281

Since failing to readjust means that pH is not in the readjustment range,
the probability of failing to readjust can be expressed as

P 6:9� x� 7:1ð Þ ¼ P 0:4596� z� 1:3281ð Þ
¼ U 1:3281ð Þ � U 0:4596ð Þ � 0:2308

Weibull Distribution

The Weibull distribution is a continuous probability distribution that is widely used
to model the time-to-failure distribution of engineered systems. The PDF of a
Weibull random variable X is defined as

fX xð Þ ¼ kk kxð Þk�1e� kxð Þk ð2:43Þ

Here, x > 0, k > 0 is the scale parameter, and k > 0 is the shape parameter.
Integrating the Weibull PDF results in a Weibull CDF of the following form

FX xð Þ ¼ 1� e� kxð Þk ð2:44Þ

If the Weibull distribution is used to model the time-to-failure distribution, the
failure rate can be computed as

hX xð Þ ¼ fX xð Þ
1� FX xð Þ ¼ kk kxð Þk�1 ð2:45Þ

for the time x > 0. The failure rate is a constant over time if k = 1. In this case, the
Weibull distribution becomes an exponential distribution. A value of k > 1
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indicates a decreasing failure rate and a value of k < 1 indicates an increasing
failure rate. Weibull PDFs with different scale and shape parameters are compared
in Fig. 2.8. As k increases, the PDF shrinks towards the y axis and the height
increases. As can be seen in the plots, the Weibull distribution is able to model both
“peaked” and “peakless” PDFs.

Exponential Distribution

As mentioned earlier, the Weibull distribution with k = 1 is an exponential distri-
bution with the parameter k. The PDF of an exponential distribution can be readily
obtained by setting k = 1 in Eq. (2.43). It takes the following form

fX xð Þ ¼ ke�kx ð2:46Þ

Fig. 2.8 Weibull PDFs and
the corresponding CDFs
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The CDF can be easily obtained as

FX xð Þ ¼ 1� e�kx ð2:47Þ

The exponential distribution can be used to model the lifetime distribution of an
engineered system with a constant failure rate. Exponential PDFs with different
parameters are graphically compared in Fig. 2.9. As k increases, the height
increases and the width decreases.

Example 2.12 The lifespan of a certain type of device has an advertised
failure rate of 0.01 per hour. The failure rate is constant and the exponential
distribution applies.

(1) Compute the mean time-to-failure (MTTF).
(2) Compute the probability that at least 200 h pass before a failure is

observed.

Solution

(1) The time-to-failure distribution is

fTðtÞ ¼ ke�kt ¼ 0:01e�0:01t

The MTTF can be computed by taking the expectation of T, expressed as

MTTF ¼
Zþ1

0

t � fTðtÞdt ¼
Zþ1

0

t � ke�ktdt ¼ �
Zþ1

0

tde�kt

¼ �te�ktjþ1
0 þ

Zþ1

0

e�ktdt

¼ 0þ 1
k
¼ 1

k
¼ 100 h

(2) The probability of time-to-failure being at least 200 h can be computed as

P t� 200ð Þ ¼
Zþ1

200

fTðtÞdt ¼
Zþ1

200

ke�ktdt

¼ �e�kt
��þ1
200 ¼ e�2 � 0:1353
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2.6 Random Vectors and Joint Distribution Functions

In the previous sections, we have focused our discussion on single random vari-
ables. In engineering practice, quite often two or more random variables are present.
For example, in a two-dimensional rectangular plate, both the length and width can
be modeled as random variables. Thus, it is important to study multiple random
variables, which are often grouped as a single object, namely a random vector. The
aim of this section is to introduce the probability model of a random vector,
conditional probability, and independence. We will separately discuss both con-
tinuous and discrete random vectors that consist of two random variables.

Fig. 2.9 Exponential PDFs
and the corresponding CDFs
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2.6.1 Joint and Marginal Probability Distributions

Let us first consider the discrete case. The joint PMF of two discrete random
variables X and Y is defined by

pXY x; yð Þ ¼ P X ¼ x; Y ¼ yð Þ ð2:48Þ

In this case, the joint CDF, denoted as FXY(x, y), can be defined in a similar fashion
as the univariate CDF. It takes the following form

FXY x; yð Þ ¼
X
yi � y

X
xi � x

pXY xi; yj
� � ð2:49Þ

We can derive the marginal PMFs pX(x) and pY(y) from the joint PMF pXY(x, y) as

pX xð Þ ¼
X
j

pXY xi; yj
� �

pY yð Þ ¼
X
i

pXY xi; yj
� � ð2:50Þ

Example 2.13 Find the marginal PMF pX(x) given the following joint PMF

pXY x; yð Þ ¼
2 xþ 1ð Þ= xþ 2ð Þ½ 	y

n nþ 3ð Þ ; if x ¼ 0; 1; 2; . . .; n� 1; y� 0
0; otherwise

�

Solution
For x = 0, 1, 2, …, n, we take the summation of y over the whole range

pX xð Þ ¼
Xþ1

y¼�1
pXY x; yð Þ

¼
Xþ1

y¼0

2 xþ 1ð Þ= xþ 2ð Þ½ 	y
n nþ 3ð Þ

¼ 2
n nþ 3ð Þ

1
1� xþ 1ð Þ= xþ 2ð Þ ¼

2 xþ 2ð Þ
n nþ 3ð Þ

Thus

pX xð Þ ¼
2 xþ 2ð Þ
n nþ 3ð Þ ; if x ¼ 0; 1; 2; . . .; n� 1;
0; otherwise

�
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We verify by induction that

Xn�1

x¼0

pX xð Þ ¼
Xn�1

x¼0

2 xþ 2ð Þ
n nþ 3ð Þ ¼

2
n nþ 3ð Þ

n nþ 3ð Þ
2

¼ 1

The joint PMF with n = 5 is illustrated in Fig. 2.10.

Next, let us consider the continuous case. The joint CDF of two continuous
random variables X and Y is defined by

FXY x; yð Þ ¼ P X� x; Y � yð Þ ¼
Zy
�1

Zx
�1

fXY s; tð Þdsdt ð2:51Þ

where fXY(x, y) is the joint PDF of X and Y. The joint PDF fXY(x, y) can also be
obtained from the joint CDF as

fXY x; yð Þ ¼ @2FXY x; yð Þ
@x@y

¼ @2FXY x; yð Þ
@y@x

ð2:52Þ

An example joint PDF is shown in Fig. 2.11, where X and Y are jointly continuous.
The line boundary between two surface areas with different line styles follows the
shape of a conditional PDF, which will be introduced in the next section.

Fig. 2.10 Joint PMF in Example 2.13
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The integrations of the joint PDF fXY(x, y) with respect to X and Y give the
marginal PDFs fY(y) and fX(x), respectively, as

fY yð Þ ¼
Zþ1

�1
fXY s; yð Þds

fX xð Þ ¼
Zþ1

�1
fXY x; tð Þdt

ð2:53Þ

The equation above suggests that integrating out one random variable produces the
marginal PDF of the other.

Example 2.14 Find the marginal PDFs fU(u) and fV(v) of two random vari-
ables u and v given the following joint PDF (|q| < 1)

/ u; v; qð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p exp � 1
2 1� q2ð Þ u2 � 2quvþ v2

� �	 


Solution
The symmetry of the joint PDF indicates that the two random variables have
the same marginal PDFs. It is then sufficient to only compute fU(u). To do so,
we integrate out v as

Fig. 2.11 An example of a
joint continuous PDF
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fU uð Þ ¼
Zþ1

�1
/ u; v; qð Þdv

¼
Zþ1

�1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p exp � 1
2 1� q2ð Þ u2 1� q2

� �þ v� quð Þ2
� �	 


dv

¼ e�u2=2ffiffiffiffiffiffi
2p

p
Zþ1

�1

1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p exp � 1
2 1� q2ð Þ v� quð Þ2

	 

dv

Making the substitution

w ¼ v� quffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
gives the following

fU uð Þ ¼ e�u2=2ffiffiffiffiffiffi
2p

p
Zþ1

�1

1ffiffiffiffiffiffi
2p

p exp � 1
2
w2

� �
dw

We have shown that the integration is one. This gives the marginal PDF as

fU uð Þ ¼ e�u2=2ffiffiffiffiffiffi
2p

p

which is a univariate standard normal distribution. As will be discussed later,
the joint PDF considered here is a bivariate normal PDF, which has been
widely used for modeling two continuous random variables.

2.6.2 Conditional Probability and Independence

In engineering practice, we may encounter problems where the probability distri-
bution of a random variable is dependent on that of another random variable. The
modeling of such a relationship requires the use of a conditional probability. Recall
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from Sect. 2.2.3 that the probability of a joint event can be expressed as the product
resulting from the multiplication of the probabilities of an individual event and a
conditional event. Then it follows that

P E1jE2ð Þ ¼ P E1 \E2ð Þ
P E2ð Þ ð2:54Þ

In the equation above, P(E1|E2) is the conditional probability, assuming that E2 has
occurred. If we apply this relationship to a discrete random variable, we then obtain
a conditional PMF as

pXjY xjyð Þ ¼ P X ¼ xjY ¼ yð Þ

¼ P X ¼ x; Y ¼ yð Þ
P Y ¼ yð Þ

¼ pXY x; yð Þ
pY yð Þ

ð2:55Þ

Similarly, pY|X(y|x) = pXY(x, y)/pX(x). These formulae indicate that, for any fixed
x and y, pY|X(y|x) and pX|Y(x|y) share the same shapes as slices of pXY(x, y) with fixed
x and y, respectively. Two discrete random variables are independent if and only if
the following relationship holds

pXY x; yð Þ ¼ pX xð ÞpY yð Þ ð2:56Þ

Under the assumption of independence, the conditional probability becomes simply
the probability under no conditions: pX|Y(x|y) = pX(x); pY|X(y|x) = pY(y).

Example 2.15 Let us recall the example of fatigue tests. The sample mea-
surements can be obtained for the physical quantities in the strain-life model
below.

De
2

¼ r0f
E

2Nf
� �b þ e0f 2Nf

� �c
Exercise: Assume that we have 20 measurements for the fatigue strength
coefficient (rf′) and exponent (b) used in the strain-life formula. Two events
are defined as E1 = {(X1, X2)| X1 > 8 
 102 and X2 > 0.09} and E2 = {(X1,
X2)| X1 < 1.2 
 103 and X2 < 0.11}, which are graphically shown in the
following figure
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Note that P(E1) = 8/20 = 2/5, P(E2) = 16/20 = 4/5, P(E1\E2) = 4/
20 = 1/5. Find the conditioned probabilities P(E1|E2) and P(E2|E1)..

Solution
From Eq. (2.54), we have

PðE1jE2Þ ¼ PðE1 \E2Þ
PðE2Þ ¼ 1=5

4=5
¼ 1

4

PðE2jE1Þ ¼ PðE1 \E2Þ
PðE1Þ ¼ 1=5

2=5
¼ 1

2

As shown in Fig. 2.10 (with n = 5), for any fixed x, the joint pXY(x, y) be-
comes a slice as a function of y, which shares the same shape as that of the
above pX|Y(x|y).

Example 2.16 Find the conditional PMF pY|X(y|x) given the joint PMF in
Example 2.13.

Solution
Recall from Example 2.13 that

pX xð Þ ¼
2 xþ 2ð Þ
n nþ 3ð Þ ; if x ¼ 0; 1; 2; . . .; n� 1;
0; otherwise

�

Thus, for y � 0,
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pY jX yjxð Þ ¼ pXY x; yð Þ
pX xð Þ ¼ 2 xþ 1ð Þ= xþ 2ð Þ½ 	y= n nþ 3ð Þ½ 	

2 xþ 2ð Þ½ 	= n nþ 3ð Þ½ 	
¼ 1

xþ 2
xþ 1
xþ 2

� �y

Therefore,

pY jX yjxð Þ ¼ 1
xþ 2

xþ 1
xþ 2

� �y
; if y� 0

0; if y\0

(

As shown in Fig. 2.10 (with n = 5), for any fixed x, the joint pXY(x, y) be-
comes a slice as a function of y, which shares the same shape as that of the
above pX|Y(x|y).

For a continuous random variable, the conditional PDF can be expressed as

fXjY xjyð Þ ¼ fXY x; yð Þ
fY yð Þ

fY jX yjxð Þ ¼ fXY x; yð Þ
fX xð Þ

ð2:57Þ

Two jointly continuous random variables X and Y are independent if and only if
fXY(x, y) = fX(x)fY(y). As shown in Fig. 2.11, a slice of fXY(x, y) for a fixed x (i.e., the
line boundary between two surface areas) shares the same shape as the conditional
PDF.

2.6.3 Covariance and Correlation Coefficient

In the case of a single random variable, we use its variance to describe the extent to
which samples deviate from the mean of this variable. In the case of two random
variables, we need to measure how much the two variables deviate together, or the
cooperative deviation. For that purpose, we define the covariance between two
random variables X and Y as

Cov X; Yð Þ ¼ E X � lXð Þ Y � lYð Þ½ 	 ð2:58Þ

We further derive this definition as
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Cov X; Yð Þ ¼ E XY � lXY � XlY þ lXlYð Þ
¼ E XYð Þ � lXlY ¼ E XYð Þ � E Xð ÞE Yð Þ ð2:59Þ

Based on the definition of covariance, we define the correlation coefficient as

qXY ¼ Cov X; Yð Þ
rXrY

¼ E
X � lX
rX

� �
Y � lY
rY

� �	 

ð2:60Þ

It is important to note that the correlation coefficient satisfies |qXY| � 1 and
measures a linear dependence between two random variables. |qXY| = 1 in the case
of a perfect linear relationship between X and Y; and |qXY| = 0 if and only if X and
Y are uncorrelated. Clearly, if E[XY] = E[X]E[Y], X and Y are uncorrelated.

If the two variables are independent, they are correlated and qXY = 0. However,
the converse may not be true since the correlation coefficient only measures a linear
dependence between two variables. It is thus fair to say that the condition of
independence is stronger than that of being uncorrelated. Examples of correlated
and dependent, uncorrelated and dependent, and uncorrelated and independent
random variables are shown in Fig. 2.12.

2.6.4 Bivariate Normal Distribution

The bivariate normal or Gaussian distribution is a widely used joint distribution that
can be easily extended to the multivariate case. In order to define a general bivariate
normal distribution, let us first define a standard bivariate normal distribution as

/ u; v; qð Þ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p exp � 1
2 1� q2ð Þ u2 � 2quvþ v2

� �	 

ð2:61Þ

Fig. 2.12 Scatter plots of random samples from correlated and dependent (a), uncorrelated and
dependent (b), and uncorrelated and independent (c) random variables
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where u and v are jointly continuous standard normal variables, and |q| < 1 is the
correlation coefficient. Recall from Example 2.14 the following integration

Zþ1

�1
/ u; v; qð Þdv ¼ e�u2=2ffiffiffiffiffiffi

2p
p ð2:62Þ

which, after taking another integration, becomes

Zþ1

�1

Zþ1

�1
/ u; v; qð Þdvdu¼

Zþ1

�1

e�u2=2ffiffiffiffiffiffi
2p

p du ð2:63Þ

This integral of a standard normal PDF has been shown to be one. Until now, we
have shown that the double integral of the bivariate normal PDF in Eq. (2.61)
equals one, which means the probability that the pair (u, v) falls into any point on
the whole 2D plane is one.

A bivariate standard normal PDF surface for q = 0 is shown in Fig. 2.13a.
Observe from the figure that the surface exhibits a perfect circular symmetry. In
other words, for all (u, v) combinations on a circle with a certain radius, the standard
normal PDF takes the same values. This can be more clearly seen from the PDF
contour in Fig. 2.13b. Next, let us take one step further to derive Eq. (2.61) under
q = 0 as

/ u; v; q ¼ 0ð Þ ¼ 1
2p

exp � 1
2

u2 þ v2
� �	 


¼ 1ffiffiffiffiffiffi
2p

p exp � u2

2

� �
1ffiffiffiffiffiffi
2p

p exp � v2

2

� � ð2:64Þ

Fig. 2.13 Bivariate standard normal PDF surface (a) and PDF contour (b): q = 0
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This means that the joint PDF is a product of two marginal standard normal PDFs.
We then note that u and v are independent if q = 0. We further note that, if q 6¼ 0,
the joint PDF is not separable. Thus, jointly continuous standard normal variables
are independent if and only if their correlation coefficient q = 0. The joint PDF
surface for q = 0.8 is plotted in Fig. 2.14a and the corresponding PDF contour is
plotted in Fig. 2.14b. Note that the circles on which the joint PDF takes constant
values now become ellipses whose axes are the 45° and 135° diagonal lines.

Based on the bivariate standard normal PDF, we can easily define a general
bivariate normal PDF with the mean values lX and lY, the standard deviations rX
and rY, and the correlation coefficient qX as

fXY x; yð Þ ¼ 1
rXrY

/
x� lX
rX

;
y� lY
rY

; q

� �

¼
exp � 1

2ð1�q2XY Þ
x�lX
rX

� �2
�2qXY

x�lX
rX

� �
y�lY
rY

� �
þ y�lY

rY

� �2
�	�
2prXrY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2XY

p
ð2:65Þ

By integrating out unneeded variables, we can show that the marginal PDFs
fX(x) and fY(y), respectively, follow normal distributions N(lX, rX

2) and N(lY, rY
2).

The bivariate normal distribution can be generalized for an N-dimensional random
vector X: X ! R

N. The joint CDF and PDF for an N-dimensional random vector
X are written as

Joint CDF: FXðxÞ ¼ P \ n
i¼1 Xi � xif g� �

Joint PDF: fXðxÞ ¼ @n

@x1 � � � @xnFXðxÞ
ð2:66Þ

A multivariate normal random vector is distributed as

Fig. 2.14 Bivariate standard normal PDF surface (a) and PDF contour (b): q = 0.8
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fXðxÞ ¼ 2pð Þ�n
2 RXj j�1

2exp � 1
2

x� lXð ÞTR�1
X x� lXð Þ

	 

ð2:67Þ

where lX and RX are the mean vector and covariance matrix of X, respectively.

2.7 Exercises

2:1 A drawer contains 10 pairs of loose, unpaired socks. Three pairs are black, 4
are gray, and 3 are red. Answer the following questions:

(1) If you remove 2 of the socks, what is the probability that one is black
and the other is gray?

(2) If you remove 2 of the socks, what is the probability that they will
match?

2:2 Recall the fatigue test example. The sample measurements can be obtained
for the physical quantities in the damage model below.

De
2

¼ r0f
E

2Nf
� �b þ e0f 2Nf

� �c
Consider a set of 30 measurement data (see Table 2.1) for the fatigue
ductility coefficient (ef′) and exponent (c) used in the strain-life formula.
Answer the following questions:

(1) Compute the sample means and variances of the fatigue ductility
coefficient (ef′) and exponent (c), respectively.

(2) Construct the covariance matrix and find the coefficient of correlation
using the data set given in Table 2.1.

2:3 In a cellular phone company, LCD fracture failures are commonly experi-
enced. To gain a good understanding of the LCD fracture failure, the com-
pany performed a dent test on 50 LCD modules. The test data is given in

Table 2.1 Data for the fatigue ductility coefficient and exponent

ef′ c ef′ c ef′ c ef′ c ef′ c

0.022 0.289 0.253 0.466 0.539 0.630 0.989 0.694 1.611 0.702

0.071 0.370 0.342 0.531 0.590 0.621 1.201 0.690 1.845 0.760

0.146 0.450 0.353 0.553 0.622 0.653 1.304 0.715 1.995 0.759

0.185 0.448 0.354 0.580 0.727 0.635 1.388 0.717 2.342 0.748

0.196 0.452 0.431 0.587 0.729 0.645 1.392 0.716 3.288 0.821

0.215 0.460 0.519 0.655 0.906 0.703 1.426 0.703 6.241 0.894
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Table 2.2 where the test data identifies the failure displacement (df) and
failure force (Ff). Answer the following questions:

(1) Compute the sample means and variances of the failure displacement
(df) and failure force (Ff).

(2) Construct the covariance matrix and find the coefficient of correlation
using the data set given in Table 2.2.

2:4 During a manufacturing process that lasts 10 days, 15 units are randomly
sampled each day from the production line to check for defective units.
Based on historical information, it is known that the probability of a
defective unit is 0.05. Any time that two or more defectives are found in the
sample of 15, the process of that day is stopped.

(1) What is the probability that, of the 10 total days, 3 days will have the
production stopped?

(2) Given (1), what is the probability that the process is stopped in the first
2 days?

2:5 Customers arrive in a certain store according to a Poisson process with a rate
of k = 4 per hour (the number of customers arriving at any time interval with
a length t follows a Poisson distribution with the parameter kt). Given that
the store opens at 9:00 am, answer the following questions.

(1) What is the probability that exactly 1 customer has arrived by 9:30 am?
(2) Given (1), what is the probability that a total of 5 customers have

arrived by 11:30 am?

2:6 Let X and Y be two discrete random variables that take any of the values 1, 2,
or 3. Their joint PMF pXY(x, y) is given by the following matrix, with pXY(x,
y) being the element on the xth row and the yth column

Table 2.2 Failure displacement/force data (from the LCD module dent test)

df Ff df Ff df Ff df Ff df Ff

1.0105 2.0428 1.1680 1.9648 1.2717 1.8874 1.2233 2.2746 1.0946 2.7343

0.6915 2.6993 0.6809 2.5530 0.6093 2.4002 1.1010 2.6674 1.0367 1.8956

1.4959 1.9897 0.6728 1.9722 0.6436 2.5901 0.9569 1.8998 1.4014 2.4851

0.8989 2.7379 1.2995 1.3366 1.2011 2.7858 0.6554 2.7567 1.3191 2.1417

0.8676 2.7248 1.4146 1.7351 1.1431 1.9160 1.3022 2.4822 1.2609 1.3805

0.6558 2.0972 1.0804 2.7867 1.0735 2.5905 0.9038 2.5498 0.6462 2.3304

0.8684 2.4429 0.6982 2.4016 1.2567 2.3779 1.1471 2.2240 0.6656 2.0282

0.6417 2.0810 1.3432 2.3986 1.2365 2.2008 1.2671 2.7754 0.6797 1.9377

1.0549 1.9513 0.9043 2.0410 1.3032 2.5604 0.6943 2.3596 1.3185 2.3303

1.2853 2.1653 0.8646 2.1482 0.8592 2.0957 0.7151 2.7484 1.4487 2.0789
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Answer the following questions.

(1) Find the marginal PMFs pX(x) and pY(y).
(2) Compute the probability P(X < Y).
(3) Determine whether X and Y are independent.
(4) Compute the conditional probability P(X = 2|Y = 2).

2:7 Given the joint density function of two random variables X and Y

fXY x; yð Þ ¼ 4xy; if 0\x; y\1
0; otherwise

�

Answer the following questions.

(1) Find the marginal distributions of X and Y.
(2) Compute the conditional probability P(0 < X < 0.5|Y = 0.25).

2:8 Given the joint density function of two random variables X and Y

fXY x; yð Þ ¼
2
3 xþ 2yð Þ; if 0\x; y\1
0; otherwise

�

Answer the following questions:

(1) Find the marginal distributions of X and Y.
(2) Compute the means and variances of X and Y.
(3) Compute the correlation coefficient between X and Y.

2:9 Let the random variables X and Y be independent with the densities being
fX(x) and fY(y), respectively. Assume that Y is a positive random variable.
Define a new random variable as Z = ln(Y)/X. Answer the following
questions:

(1) Find the PDF of Z.
(2) Given that the expectations of X and Y being E(X) and E(Y), respec-

tively, compute E(Z).

2:10 Suppose that X and Y follow a standard bivariate normal distribution with the
correlation coefficient being q. Answer the following questions:

(1) Prove that the covariance of X and Y is q.
(2) Find the conditional PDFs fX|Y(x|y) and f Y|X(y|x).
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Chapter 3
Statistical Data Analysis

In Chap. 2, we discussed the basic concepts of probability, discrete and continuous
random variables, univariate and joint probability distributions, conditional prob-
ability, and independence. A reasonably complete and self-sustained treatment has
been given to these topics, which form a theoretical basis for practical statistical
data analysis. This chapter discusses statistical analysis based on available sample
data. Specifically, it introduces statistical procedures to determine an appropriate
probability distribution for a random variable based on a limited set of sample data.
Reliability analysis that will be discussed in subsequent chapters often requires
these procedures. In this chapter, discussion of statistical data analysis will be
separately conducted on two different branches of techniques: (i) conventional
statistical methods (graphical methods and statistical hypothesis tests) and
(ii) Bayesian statistics.

3.1 Conventional (or Frequentist) Statistical Methods

In many engineering design problems, uncertainty from various sources (e.g.,
material properties, geometric tolerances, and operation conditions) is modeled
using random variables. The randomness of the variables is represented by prob-
ability distributions, which are often unknown. In most situations, it is impossible
or impractical to observe the entire population of engineered products. For
example, it is prohibitively time-consuming and expensive to test the compressive
strength of all Aluminum–Lithium alloy parts. Thus, we often rely on a given
sample of observations (or sample data) from the population to infer a probability
distribution that best represents the population. In such cases, we need to develop
and validate an answer to an essential question: Which distribution best represents
the randomness conveyed by the sample of observations? Under the context of
conventional statistical inference, graphical methods (e.g., histograms and proba-
bility plots) and/or quantitative methods (e.g., sample statistics, maximum
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likelihood estimation, and statistical tests) can be used to derive such a probability
distribution. These two categories of methods are separately discussed in this
section.

3.1.1 Graphical Methods

Graphical display of sample data enables visual examination of the data, which
often gives insights useful for choosing an appropriate probability distribution to
model the uncertainty of the population from which the data are sampled. Two
graphical methods, namely histograms and probability plotting, have proved their
usefulness in statistical data analysis.

Histogram

A histogram visually shows the frequency distribution of a given sample of
observations. A histogram can be constructed using the following steps:

Step 1: Specify the number of bins nb based on the number of observations M,
subdivide the range of data into nb equal intervals, and specify the boundaries of
these intervals.
Step 2: Count the number of observations falling into each interval as the frequency
in the interval and, if needed, calculate the normalized frequency by dividing the
observed frequency in the interval by the total number of observations M.
Step 3: Plot the histogram by drawing, above each interval, a rectangle whose width
is the length of the interval and whose height is the frequency (or normalized
frequency) corresponding to the interval.

The number of bins nb is very critical in constructing an informative histogram.
Generally speaking, a choice of nb between 5 and 20 often gives satisfactory results
in engineering practice. An empirical square root relationship between nb and the
number of observations M (i.e., nb = M1/2) can be used as a general guideline in
determining the number of bins.

We can practice the above-mentioned three steps using the comprehensive
strength data in Table 3.1. The data were obtained from testing 80 Aluminum–

Lithium alloy specimens. In what follows, we demonstrate the process of creating a
histogram in a step-by-step manner.

Step 1: Using the empirical square root relationship, we find nb = M1/2 = 801/2 � 9.
Therefore, the raw data are subdivided into 9 equal intervals. The minimum and
maximum strength values, 76 and 245, are then rounded off to 70 and 250,
respectively. Thus, the total length of the intervals is 180 with 9 bins, which results
in the width of each bin being 20.
Step 2: The number of observations falling into each interval and the resultant
frequency distribution are then counted and summarized, as shown in Table 3.2.
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The normalized frequency is also computed by dividing the frequency by the total
number of observations.
Step 3: The histogram is graphed, as shown in Fig. 3.1a, using the frequency values
in Table 3.2. Also plotted is the normalized histogram, shown in Fig. 3.1b, whose
total area is approximately 1.0.

A histogram graphically informs an engineer of the properties (e.g., central
tendency, dispersion, skewness) of the distribution of the sample data. These
properties often give insights into the choice of a probability distribution to model
the uncertainty of the population. As can be seen from Fig. 3.1, the histogram
appears to be symmetric and bell-shaped, which provides evidence that the normal
distribution is a good choice to represent the population of compressive strength
measurements. The good match between the histogram and the normal fit
strengthens the validity of this choice. Detailed information regarding how to fit a
normal distribution and how to quantitatively validate this fit will be discussed in
subsequent sections.

The histogram in Fig. 3.1 possesses a single mode where the maximum value is
taken. This type of probability distribution is referred to as a unimodal distribution.
In engineering practice, we may also encounter probability distributions with more
than one mode. An example of a bimodal distribution is shown in Fig. 3.2. The

Table 3.1 Compressive
strength data (unit: psi) from
80 Aluminum–Lithium alloy
specimens

105 221 183 186 121 181 180 143

97 154 153 174 120 168 167 141

245 228 174 199 181 158 176 110

163 131 154 115 160 208 158 133

207 180 190 193 194 133 156 123

134 178 76 167 184 135 229 146

218 157 101 171 165 172 158 169

199 151 142 163 145 171 148 158

160 175 149 87 160 237 150 135

196 201 200 176 150 170 118 149

Table 3.2 Distributions of
frequency and normalized
frequency for compressive
strength data

Interval (psi) Frequency Normalized frequency

70–90 2 2/80 = 0.0250

90–110 3 0.0375

110–130 6 0.0750

130–150 14 0.1750

150–170 22 0.2750

170–190 17 0.2125

190–210 10 0.1250

210–230 4 0.0500

230–250 2 0.0250
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random variable is the power loss due to the friction between the piston ring and
cylinder liner, oil consumption, blow-by, and/or liner wear rate in a V6 gasoline
engine. Compared to a unimodal distribution, a bimodal distribution is more
complicated and more challenging to analyze. Reliability analysis involving this
type of PDF will be discussed in detail in Chap. 5.

Example 3.1 The reliability of the Aluminum–Lithium alloy is defined as the
probability that its compressive strength exceeds 110 psi. Estimate this reli-
ability based on the histogram in Fig. 3.1a.

Fig. 3.1 Histogram (a) and normalized histogram (b) of compressive strength

Fig. 3.2 An example
bimodal probability
distribution
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Solution
In conventional statistical inference, probability is interpreted as normalized
frequency. Thus, the reliability can be estimated by computing the normalized
frequency of finding a sample alloy specimen whose comprehensive strength
is larger than 110 psi, expressed as

R ¼ P E[ 110 psið Þ ¼ 1� P E� 110 psið Þ
¼ 1� 2þ 3

80
¼ 15

16

Probability Plotting

As mentioned earlier, the visual display of the sample distribution provided by a
histogram provides insights into which probability distribution offers a reasonable
representation of the uncertainty in the sample data. However, for a problem with
sample data of a small to moderate size, the histogram might give a misleading
indication on the underlying distribution. In such cases, the underlying distribution
can be better identified by plotting the sample data along the x-axis and the cor-
responding empirical cumulative probability values along the y-axis. This graphical
method is referred to as probability plotting. It assumes a hypothesized distribution
and uses a probability paper that is constructed according to the hypothesized
distribution. Probability paper is commonly used for the normal, lognormal, and
Weibull distributions. If the empirical cumulative curve follows a linear line on the
probability paper, it can be concluded that the underlying distribution conforms to
the hypothesis.

The process of constructing a probability plot consists of three steps. First, the
sample of observations is sorted in ascending order. The sorted observations are
denoted as x1, x2, …, xM. Next, the empirical cumulative probability values are
computed for xi as (i − 0.5)/M, i = 1, 2, …, M. Finally, the empirical cumulative
probability values are plotted versus the sample values on the probability paper
corresponding to a hypothesized distribution. If the hypothesized distribution cor-
rectly represents the uncertainty of the data, the plotted points should form an
approximately straight line. The further the points deviate from a straight line, the
greater the indication of a departure from the hypothesized distribution. It is usually
a subjective decision to determine whether the data plot forms a straight line.

This process can be illustrated using the compressive strength data in Table 3.1.
Let us, for example, investigate whether the data follow a normal distribution by
using the normal probability plot. First, we arrange the data in ascending order and
compute the empirical cumulative probability values, as summarized in Table 3.3.
Then, we plot (i − 0.5)/M and xi on a normal probability paper, as shown in
Fig. 3.3a. A straight line is also plotted to help judge whether the data plot follows a
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Table 3.3 Empirical cumulative probability values for compressive strength data

xi i (i − 0.5)/M xi i (i − 0.5)/M xi i (i − 0.5)/M xi i (i − 0.5)/M

76 1 0.0063 145 21 0.2562 163 41 0.5062 181 61 0.7562

87 2 0.0187 146 22 0.2687 163 42 0.5188 183 62 0.7688

97 3 0.0313 148 23 0.2813 165 43 0.5313 184 63 0.7813

101 4 0.0437 149 24 0.2938 167 44 0.5437 186 64 0.7937

105 5 0.0563 149 25 0.3063 167 45 0.5563 190 65 0.8063

110 6 0.0688 150 26 0.3187 168 46 0.5687 193 66 0.8187

115 7 0.0813 150 27 0.3312 169 47 0.5813 194 67 0.8313

118 8 0.0938 151 28 0.3438 170 48 0.5938 196 68 0.8438

120 9 0.1063 153 29 0.3563 171 49 0.6062 199 69 0.8562

121 10 0.1187 154 30 0.3688 171 50 0.6188 199 70 0.8688

123 11 0.1313 154 31 0.3812 172 51 0.6312 200 71 0.8812

131 12 0.1437 156 32 0.3937 174 52 0.6438 201 72 0.8938

133 13 0.1563 157 33 0.4063 174 53 0.6563 207 73 0.9063

133 14 0.1688 158 34 0.4188 175 54 0.6687 208 74 0.9187

134 15 0.1812 158 35 0.4313 176 55 0.6813 218 75 0.9313

135 16 0.1938 158 36 0.4437 176 56 0.6937 221 76 0.9437

135 17 0.2062 158 37 0.4562 178 57 0.7063 228 77 0.9563

141 18 0.2188 160 38 0.4688 180 58 0.7188 229 78 0.9688

142 19 0.2313 160 39 0.4813 180 59 0.7312 237 79 0.9812

143 20 0.2437 160 40 0.4938 181 60 0.7438 245 80 0.9938

Fig. 3.3 Normal probability plots of compressive strength data using cumulative probability
values (a) and standard normal scores (b)
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linear line. Since all the points appear to lie around the straight line, it can be
concluded that the compressive strength follows, at least approximately, a normal
distribution.

It is worth noting that we can also build a probability plot on a standard two
dimensional graph paper. This can be done by transforming the CDF values of xi to
the corresponding standard normal scores zi. This transformation can be expressed
as

zi xið Þ ¼ U�1 P Z � zið Þð Þ ¼ U�1 i� 0:5
M

� �
ð3:1Þ

where U�1 is the inverse standard normal CDF. The standard normal scores zi are
plotted against the sample values xi in Fig. 3.3b. This normal probability plot makes
the empirical cumulative curve linear by transforming the cumulative probabilities
of xi, while the one in Fig. 3.3a does so by adjusting the scale of the y-axis. Note
that these two plots are virtually equivalent.

3.1.2 Quantitative Methods

Quantitative methods for estimating the underlying distribution of the population
can be categorized into two groups: parameter estimation and hypothesis testing.
We will discuss two methods for parameter estimation: (i) method of moments and
(ii) maximum likelihood estimation (MLE). The discussion of hypothesis testing
will be focused on goodness-of-fit tests.

Method of Moments

As mentioned in Sect. 2.4, mean, variance, skewness, and kurtosis are the first
four statistical moments. These moments not only provide information about the
characteristics (e.g., center, dispersion, and shape) of the PDF of a random variable
X, but the moments can also be used to estimate the distributional parameters of the
PDF. The central idea behind the method of moments (or sample statistics) is that
the distributional parameters of a PDF can be estimated by equating the population
moments (derived from the functional form of the PDF) to the corresponding
sample moments (derived from a sample of observations). A set of such equations
with the distributional parameters as the unknowns can be solved to produce
estimates of these distributional parameters. The detailed procedure is listed as
follows:

Step 1: Equate the first population moment E(X) to the first sample moment (sample
mean).
Step 2: Equate the second population moment E[(X − µ)2] to the second sample
moment (sample variance).
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Step 3: Continue equating the third and higher-order population moments E
[(X − µ)k], k = 3, 4,…, with the corresponding sample moments, until the number
of equations equals that of distributional parameters.
Step 4: Solve the equations from Steps 1–3 to obtain the method of moments
estimators of the parameters.

Most distributions have two distributional parameters, and the mean and vari-
ance suffice to yield the estimates of the distributional parameters for these distri-
butions. The first two population moments, mean and variance, can be expressed as
functions of distributional parameters for several important probability distribu-
tions, as shown in Table 3.4.

Example 3.2 Suppose we have a set of random samples x1, x2, …, xM from a
normal distribution with the PDF as

fX x; l; rð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
x� l
r

� �2� �

Find the method of moments estimators of the distributional parameters l
and r.

Solution
The first population moment (population mean) is

E Xð Þ ¼ l

The second population moment (population variance) is

Var Xð Þ ¼ E X � lð Þ2
h i

¼ r2

Again, since the normal distribution has two distributional parameters, we
only need two equations. Equating the first population moment with the
corresponding sample moment gives

E Xð Þ ¼ l ¼ 1
M

XM
i¼1

xi

Next, equating the second theoretical moment about the mean with the cor-
responding sample moment gives:

E X � lð Þ2
h i

¼ r2 ¼ 1
M

XM
i¼1

xi � l̂ð Þ2
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Finally, we need to solve the two equations for the two parameters. In this
particular case, the equations appear to have already been solved for l and r2.
We can thus obtain the method of moments estimators of the parameters as

l̂ ¼ 1
M

XM
i¼1

xi

r̂2 ¼ 1
M

XM
i¼1

xi � l̂ð Þ2

Maximum Likelihood Estimation

Compared to the method of moments, the maximum likelihood estimation (MLE) is
a more general and widely used method used to estimate distributional parameters.
The basic idea of this method is to optimize the parameters such that a likelihood
function is maximized.

Let us first consider the case of a continuous probability distribution. Assume
that we have a set of random samples x1, x2, …, xM from the PDF fX(x; h) of a
continuous random variable X, where h is an unknown distributional parameter. The
goal here is to find a good point estimator of h using the random samples x1, x2,
…, xM. It is reasonable that such an estimator of h should be the value of h that
maximizes the probability (or likelihood) of obtaining the set of random samples.
The likelihood function in this case can be viewed as a joint probability density
function, expressed as

L hð Þ ¼ fX x1; hð ÞfX x2; hð Þ � � � fX xM ; hð Þ ¼
YM
i¼1

fX xi; hð Þ ð3:2Þ

For convenience, we can use the logarithm of the likelihood function, namely the
log-likelihood function, expressed as

ln L hð Þ ¼
XM
i¼1

ln fX xi; hð Þ ð3:3Þ

Themaximum likelihood estimator of h that maximizes the likelihood function above
can be obtained by equating the first-order derivative of this function to zero. In cases
where multiple distributional parameters need to be estimated, the likelihood func-
tion becomes a multivariate function of the unknown distributional parameters. We
can find the maximum likelihood estimators of these parameters by equating the
corresponding partial derivatives to zeros and solving the resultant set of equations.
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Example 3.3 Suppose we have a set of random samples x1, x2, …, xM from a
normal distribution with the PDF as

fX x; l; rð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
x� l
r

� �2� �

Find the maximum likelihood estimators of the distributional parameters l
and r.

Solution
First, the likelihood function of the random samples is derived as

L l; rð Þ ¼
YM
i¼1

fX xi; l; rð Þ ¼
YM
i¼1

1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
xi � l
r

� �2� �

¼ 2pr2
	 
�n=2

exp � 1
2r2

XM
i¼1

xi � lð Þ2
" #

To make the computation more convenient, we derive the log-likelihood
function as

ln L l; rð Þ ¼ � n
2
ln 2pr2
	 
� 1

2r2
XM
i¼1

xi � lð Þ2

Next, we compute the partial derivatives of the log-likelihood function with
respect to l and r, expressed as

@ ln L l; rð Þ
@l

¼ 1
r2
XM
i¼1

xi � lð Þ

@ ln L l; rð Þ
@r

¼ � M
2r2

þ 1
2r4

XM
i¼1

xi � lð Þ2

Finally, we equate the derivatives to zero and solve the resultant set of
equations to obtain the maximum likelihood estimators

l̂ ¼ 1
M

XM
i¼1

xi

r̂2 ¼ 1
M

XM
i¼1

xi � l̂ð Þ2

Note that the maximum likelihood estimators are the same as the estimators
from the method of moments (see Example 3.2).
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Using this information, we can graphically demonstrate the basic idea of the
MLE. First, we randomly generate 100 samples from a normal distribution with
l = 3.0 and r = 1.0. We then fix r at 1.0 and plot the log-likelihood values against
l in Fig. 3.4. Observe that the log-likelihood function has a maximum value around
l = 3.0, which indicates that the maximum likelihood estimator of l is approxi-
mately equal to its true value.

For the case of a discrete probability distribution, the likelihood function of the
samples becomes the probability of obtaining the samples x1, x2, …, xM, expressed
as

L hð Þ ¼ P X1 ¼ x1;X2 ¼ x2; . . .;XM ¼ xMð Þ ¼
YM
i¼1

pXi xi; hð Þ ð3:4Þ

where pX(x; h) is the PMF of the discrete random variable and h is the unknown
distributional parameter. Observe that the maximum likelihood estimator of the
parameter of a discrete distribution maximizes the probability of obtaining the
sample values x1, x2, …, xM.

Example 3.4 Suppose the samples x1, x2, …, xM are randomly drawn from a
Bernoulli distribution with the PMF as

pX x; p0ð Þ ¼ px0 1� p0ð Þ1�x x ¼ 0; 1
0 otherwise

�

Find the maximum likelihood estimator of the distributional parameter p0.

Fig. 3.4 Log-likelihood of
100 random samples from a
normal distribution
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Solution
First, we derive the log-likelihood function of the random samples as

ln L pð Þ ¼
XM
i¼1

ln pX x; p0ð Þ ¼ ln p0
XM
i¼1

xi þ ln 1� p0ð Þ M �
XM
i¼1

xi

 !

Next, we take the first-order derivative of the likelihood function above as

d ln L p0ð Þ
dp0

¼ 1
p0

XM
i¼1

xi � 1
1� p0

M �
XM
i¼1

xi

 !

Finally, we equate the derivative to zero and solve the resultant equation to
obtain the maximum likelihood estimator

p̂0 ¼ 1
M

XM
i¼1

xi

Note that the estimator is the same as the estimator from the method of
moments (see Table 3.4).

Chi-Square Goodness-of-Fit Tests

The parameter estimation methods discussed earlier are applicable to problems
where the type of the underlying probability distribution of the population is
known. In engineering practice, we often encounter problems where the types of the
distributions are unknown. In such cases, we need to determine how well a sample
of observations fit an assumed distribution. It is simple and quick to use probability
plotting to determine how closely a set of sample data fit a certain type of distri-
bution, but this graphical method requires subjective judgment on the linearity of
the plotted curve on probability paper. Thus, an objective and quantitative way to
test the goodness-of-fit is needed. In what follows, we describe a statistical test
procedure for this purpose that is based on the chi-square distribution, namely the
chi-square test.

The chi-square test is a statistical test that addresses how well an assumed
distribution reflects a set of sample data, i.e., how close the observed values are to
those that would be expected under the assumed distribution. The chi-square test is
defined for the following hypotheses:

H0 The data follow an assumed distribution.
H1 The data do not follow the assumed distribution.
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Suppose we have M random samples from a population whose distribution is
unknown. We follow the same steps as in plotting a histogram to arrange the
samples in nb equally spaced intervals (or bins). Let Oi and Ei denote the observed
and expected frequencies for the ith interval, respectively. The expected frequency
is calculated by

Ei ¼ M � FX xui
	 
� FX xli

	 
�  ð3:5Þ

where FX(x) is the CDF of the hypothesized distribution being tested, and xi
u and xi

l

are respectively the upper and lower limits of the ith interval. It follows that the test
statistic

v2 ¼
Xnb
i¼1

Oi � Eið Þ2
Ei

ð3:6Þ

approximately follows a chi-square distribution with the degrees of freedom v =
nb − k − 1, where k denotes the number of distributional parameters of the
hypothesized distribution. A high value of v2 suggests the observations have a high
degree of deviation from the assumed distribution, which casts doubt on the null
hypothesis. The null hypothesis is usually rejected when the value of v2 is larger
than the 95th percentile. This corresponds to a significance level a = 0.05, which
requires the hypothesized distribution be acceptable for at least 95 out of 100 sets of
random samples. The hypothesis H0, in favor of the assumed distribution, should be
rejected if

v2 ¼
Xnb
i¼1

Oi � Eið Þ2
Ei

[ v2a;nb�k�1 ð3:7Þ

where v2a;nb�k�1 is the chi-square critical value with nb − k − 1 degrees of freedom
and the significance level a.

The chi-square goodness-of-fit test can be applied to both continuous and dis-
crete distributions. Since this test involves the use of binned data (i.e., data cate-
gorized into classes), the value of the chi-square test statistic varies depending on
how the data are binned. Furthermore, this test requires a reasonably large number 1

of observations in order for the chi-square approximation to be valid.

Example 3.5 Use the chi-square goodness-of-fit test to determine whether the
compressive strength data of the Aluminum–Lithium alloy in Table 3.1
follow a normal distribution (a = 0.05).

1A rough rule of thumb concerning the sample size is that there should be at least 50 samples in
order for the chi-square approximation to be valid. A more rigorous approach to sample size
determination involves studying the power of a hypothesis test [1].
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Solution
The distributional parameters, l and r, of the hypothesized normal dis-

tribution can be directly obtained from the sample data as lX = 162.66,
rX = 33.77. We then follow Table 3.2 to divide the sample data into intervals
and pool end intervals with frequencies less than 5 with neighboring intervals
to make the frequencies at least 5. The distribution of observed and expected
frequencies is shown in the table below. We then execute the hypothesis
testing step-by-step.

Interval (psi) Observed frequency Oi Expected frequency Ei (Oi − Ei)
2/Ei

70–110 5 4.51 0.0523

110–130 6 8.58 0.7771

130–150 14 14.97 0.0627

150–170 22 18.57 0.6331

170–190 17 16.39 0.0227

190–210 10 10.29 0.0081

210–250 6 6.05 0.0005

Total 80 80 1.5565

1. Specify the null and alternative hypotheses as

H0 The compressive strength data follow a normal distribution.
H1 The compressive strength data do not follow a normal distribution.

2. The significance level a = 0.05.
3. The chi-square test statistic is defined as

v2 ¼
Xnb
i¼1

Oi � Eið Þ2
Ei

4. The degree of freedom is computed as v = nb − k − 1 = 7 − 2 − 1 = 4.
5. The critical value is v20:05;4 ¼ 9:49.
6. The test statistic can be computed from a v2 look-up table as v2 = 1.56.
7. Since v2 ¼ 1:56\v20:05;4 ¼ 9:49, we cannot reject H0. We cannot find

sufficient evidence for the hypothesis that the strength data are not nor-
mally distributed. The p-value is computed as p = 0.9065.
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Kolmogorov-Smirnov Goodness-of-Fit Tests

Another goodness-of-fit test, the Kolmogorov-Smirnov (K-S) test, is also quite
useful in engineering practice, particularly in reliability analysis. The K-S test is
used to statistically test if sampled data come from a hypothesized distribution,
using the following hypotheses:

H0 The data follow an assumed distribution.
H1 The data do not follow the assumed distribution.

The basic idea of this test is to compare the empirical CDF SX(x) from the sample
data with the theoretical CDF FX(x) from the hypothesized probability distribution.
First, let us look at how to define an empirical CDF. Suppose we have M ordered
random samples x1 � x2 � ��� � xM from the underlying distribution of a pop-
ulation. The empirical CDF SX(x) at a value x is defined as the proportion of sample
points less than or equal to x, expressed as

SX xð Þ ¼ 1
M

XM
i¼1

I xi � xð Þ ð3:8Þ

where I(�) is an indicator function that takes the value 1 if xi � x, and 0 otherwise.
As shown in Fig. 3.5, the empirical CDF is essentially a step function that exhibits a
step increase of 1/M at each sample point. Now that we have the definition of the
empirical CDF, the K-S distance can then be defined as the maximum distance
between the empirical and theoretical CDF curves, expressed as

DKS ¼ max
1� i�M

SX xið Þ � FX xið Þj j ð3:9Þ

X
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F

x1 x2
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( )X iS x
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Fig. 3.5 K-S test statistic
with five random samples
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Here, the K-S distance DKS is the test statistic whose probability distribution
depends only on the sample size M. With a specified significance level a, we can
obtain the critical value from a K-S look-up table. The null hypothesis in favor of
the assumed distribution should be rejected if

DKS [DKS;a;M ð3:10Þ

where DKS,a,M is the K-S critical value with the sample size M and the significance
level a.

A distinctive feature of the K-S test is that, unlike the chi-square test, it does not
require a large sample size to make the assumption about the validity of the dis-
tribution of the test statistic. However, the K-S test is only applicable to continuous
distributions. More details regarding these two statistical tests can be found in [2]
and [3], respectively.

Example 3.6 Use the K-S goodness-of-fit test to determine whether the
compressive strength data of the Aluminum–Lithium alloy in Table 3.1 can
be represented by a normal distribution (a = 0.05).

Solution
As mentioned in Example 3.5, the distributional parameters of the hypothe-
sized normal distribution can be obtained from the samples as lX = 162.66,
rX = 33.77. Based on Eq. (3.8), we can compute the empirical CDF SX(x),
which is plotted along with the theoretical CDF in Fig. 3.6.

We then execute the hypothesis testing step-by-step.

1. Specify the null and alternative hypotheses as

H0 The compressive strength data follow a normal distribution.
H1 The compressive strength data do not follow a normal distribution.

2. The significance level a = 0.05.
3. The K-S test statistic is defined as

DKS ¼ max
1� i�M

SX xið Þ � FX xið Þj j

4. The critical value is DKS,0.05,4 = 0.1521.
5. The value of the test statistic can be computed as DKS = 0.0561.
6. Since DKS = 0.0561 < DKS,0.05,4 = 0.1521, we cannot reject H0. Thus, we

cannot find sufficient evidence for the assumption that the strength data do
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not follow a normal distribution. The p-value can be computed as
p = 0.9507. The conclusion is the same as that reached with the
chi-square test in Example 3.5.

3.2 Bayesian Statistics

We have discussed methods of statistical inference that view probability as nor-
malized frequency and that rely on a set of samples randomly drawn from a pop-
ulation to estimate the probability distribution of the population. All of these
methods have been developed using what statisticians would call a frequentist
approach. In this section, we revisit parameter estimation using a different
approach, namely Bayesian inference. This approach utilizes prior information in
conjunction with the sample information for parameter estimation.

3.2.1 Bayes’ Theorem

Bayes’ theorem (also known as Bayes’ rule or Bayes’ law) is developed based on
the definition of conditional probability. If A and B denote two stochastic events, P
(A|B) denotes the probability of A conditional on B. Bayes’ theorem relates the
conditional and marginal probabilities of A and B as

Fig. 3.6 Empirical and theoretical CDFs of compressive strength data
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PðAjBÞ ¼ PðBjAÞ � PðAÞ
PðBÞ ð3:11Þ

The theorem simply states that a conditional probability of A given B is equal to the
conditional probability of B given event A, multiplied by the marginal probability of
A and divided by the marginal probability of B [4]. It is straightforward to derive
Bayes’ theorem in Eq. (3.11) based on the probability rules introduced in Chap.2.
From the multiplication theorem, we know that P(A,B) = P(A|B)�P(B), and simi-
larly, P(B,A) = P(B|A)�P(A). Since P(A,B) = P(B,A), the right sides of these two
equations equal each other, which gives P(A|B)�P(B) = P(A|B)P(A). Moving P
(A) from the right-hand side to the left-hand side leaves us with Eq. (3.11).

The terms in Bayes’ theorem are defined as follows:

• P(A) is the prior probability or marginal probability of A. The prior probability
can be treated as the subjective probability that expresses our belief prior to the
occurrence of B. It is “prior” in the sense that it does not take into account any
information about B.

• P(B) is the marginal probability of B, and acts as a normalizing constant. Based
on the total probability theorem, this quantity can be computed as the sum of the
conditional probabilities of B under all possible (mutually exclusive) events Ak

(included in a set SA) in the sample space. This can be mathematically expressed
for a discrete sample space as:

PðBÞ ¼
X
Ai2SA

P BjAið ÞP Aið Þ ð3:12Þ

• P(B|A) is the conditional probability of B given the prior information about A.
• P(A|B) is the conditional probability of A given B. It is also called the posterior

probability of A given B, since it depends upon the specified value of B. The
posterior probability expresses our degree of belief on the probability of A after
the occurrence of B.

Example 3.7 Assume there are three doors (D1, D2, and D3); behind two of
the doors are goats and behind the third door is a new car. The three doors are
equally likely to have the car. Thus, the probability of getting the car by
picking each door at the beginning of the game is simply 1/3. After you have
picked a door, say D1, instead of showing you what is behind that door,
Monty opens another door, say D2, which reveals a goat. At this point, Monty
gives you the opportunity to switch the door from D1 to D3. What should you
do, given that Monty is trying to let you get a goat?

Solution
The question is whether the probability of getting the car by picking the
door D1 is the same as that by picking D3, or mathematically, whether
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P(D1|D2,Monty) = P(C|D2,Monty) = 0.5. The process of computing these two
conditional probabilities is laid out as follows:

1. The prior probabilities read P(D1) = P(D2) = P(D3) = 1/3.
2. We have some useful conditional probabilities P(D2,Monty|D1) = 1/2,

P(D2,Monty|D1) = 0, and P(D2,Monty| D3) = 1.
3. We can compute the probabilities of joint events as P(D2,Monty, D1) =

1/2 � 1/3 = 1/6, P(D2,Monty, D1) = 0, and P(D2,Monty, D3) = 1 � 1/3 =
1/3.

4. Finally, with the denominator computed as P(D2,Monty) = 1/6 + 0 +
1/3 = 1/2, we then find that P(D1|D2,Monty) = 1/3, P(D3|D2,Monty) = 2/3.

Since the conditional probability of revealing the car by picking the door
D3 is higher than that by picking the door D1, you should switch to D3 for a
better chance of getting the car.

An example that looks at vibration-based fault diagnosis of rolling element
bearings can help to make this theorem more concrete. Assume that the diagnostic
test has a detection rate of 95%2 and a false alarm rate of 30%.3 Suppose a bearing
unit, which has operated for approximately 2 years, is diagnosed as defective by the
test. We would then like to know the probability that the bearing unit is in fact
defective, given the positive test result, that is, P(defective|test+). In this example,
event A (the true condition of the bearing unit) has two possible outcomes Ak:
A1 = defective and A2 = not defective. Additionally, given the detection and false
alarm rates, we know the conditional probabilities of a positive test result under
these events: P(test +|defective) = 0.90 and P(test +|not defective) = 0.30. Using
this conditional information, together with some prior information about the
probability of becoming defective after 2 years of operation, Bayes’ theorem offers
a prescription for estimating the posterior probability that the bearing unit is
defective. The prior information we need, P(A) or P(defective), is the marginal
probability that the bearing unit is defective, not knowing anything beyond the fact
that the unit has operated in the field for around 2 years. The term “prior” simply
means that the information exists prior to the diagnostic test. Historical data
obtained from the same type of bearing suggest that the probability of becoming
defective after 2 years of operation is approximately 0.20. With the prior
and conditional information, we can now compute the posterior probability
P(A|B) � P(defective|test+), as

2A detection rate of 90% means that the test correctly detects defective cases 90% of the time.
3A false alarm rate of 30% means that, in cases where a bearing unit is not defective, the test
produces an alarm, suggesting the detection of a fault 30% of the time.
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P defective j test +ð Þ ¼
P test + j defectiveð Þ � P defectiveð Þ

P test + j defectiveð ÞP defectiveð ÞþP test + j not defectiveð ÞP not defectiveð Þ
ð3:13Þ

Combining Eqs. (3.11) and (3.12) gives rise to the formula above. Filling in the
prior and conditional probabilities yields:

P defective j test +ð Þ ¼ 0:90 � 0:20
0:90 � 0:20þ 0:30 � 0:80 � 0:4286 ð3:14Þ

Thus, the probability that the unit is defective conditional on the positive test result
is 0.4286. Since this probability is an estimated probability after the data (from the
diagnostic test) is observed, it is termed a posterior probability.

An important contribution of Bayes’ theorem is that it provides a rule on how to
update or revise a prior belief to a posterior belief; this lies at the core of Bayesian
inference. In the bearing example, the reliability or quality engineer may choose to
repeat the diagnostic test (i.e., conduct a second test). After the second test, the
engineer can use the posterior probability of being defective (P = 0.429) in
Eq. (3.14) as the new prior P(defective). By doing so, the engineer has updated the
prior probability of being defective to reflect the result of the first test. If the second
test still gives a positive result, the updated posterior probability of being defective
can be computed as:

P defective j test +ð Þ ¼ 0:90 � 0:0:4286
0:90 � 0:4286þ 0:30 � 0:5714 � 0:6923 ð3:15Þ

With the second positive test result, we obtain an increase in the posterior proba-
bility from 0.4286 to 0.6923, which means that the added test result (positive) has
increased our belief that the bearing unit might be defective. If the engineer con-
tinues to repeat the test and observe a positive result in each of the repeated tests,
these repeated tests will yield the posterior probabilities shown in Table 3.5.

Bayesian statistics stems from the concept of repeating a test and recomputing
the posterior probability of interest based on the results of the repeated testing. In
the context of reliability analysis, the Bayesian approach begins with a prior
probability of the system success event, and updates this prior probability with new
data to obtain a posterior probability. The posterior probability can then be used as a
prior probability in subsequent analysis. This may be an appropriate strategy for

Table 3.5 Posterior probabilities of being defective after repeated tests with positive results

Test
number

1 2 3 4 5 6 7 8 9 10

Posterior
probability

0.4286 0.6923 0.8710 0.9529 0.9838 0.9945 0.9982 0.9994 0.9998 0.9999
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reliability analysis in some engineering applications. In this method, we continu-
ously gather testing data to evaluate the reliability of an engineered system. We do
not start with the same estimate each time we attempt to analyze the reliability,
because previous testing data provide us with a priori information concerning the
reliability of the system.

3.2.2 Bayesian Inference

In Bayesian statistics, the quantities in Bayes’ theorem in Eq. (3.11) are typically
expressed in the form of probability distributions rather than point probabilities. In
the bearing example, we assume the prior probability of being defective after
2 years of operation is a point probability of exactly 0.20. However, the uncertainty
in bearing parameters and design variables, as well as our imperfect knowledge of
the reliability of the bearing population, give rise to a certain degree of unit-to-unit
variation in this prior probability. Thus, it is unreasonable to use a precise point
value to represent this probability. Instead, a probability distribution should be used
for the prior defect probability to capture our uncertainty about its true value.
Similarly, the point values for the conditional probabilities should be replaced with
probability distributions to represent our uncertainty about their true values. The
inclusion of the prior and conditional probability distributions eventually produces
a posterior probability distribution that is no longer a single quantity. This posterior
distribution combines the positive result observed from the diagnostic test with the
prior probability distribution to produce an updated posterior distribution that
expresses our knowledge of the probability that the bearing unit is defective.

Let us now express Bayes’ theorem in terms of continuous probability distri-
butions. Let X be a continuous random variable with a PDF f(x, h), where h is the
distributional parameter (e.g., the mean and standard deviation of a normally dis-
tributed variable). The goal of Bayesian inference is to represent prior uncertainty of
a distributional parameter with a probability distribution and to update this prob-
ability distribution with newly acquired data. The updating procedure yields a
posterior probability distribution of the parameter. This perspective is in contrast
with frequentist inference, which relies exclusively on the data as a whole, with no
reference to prior information. From the Bayesian point of view, the parameter h is
interpreted as a realization of a random variable H with a PDF fH(h). Based on
Bayes’ theorem, the posterior distribution of H, given a new observation x, can be
expressed as

fHjX hjxð Þ ¼ fXjH xjhð Þ � fH hð Þ
fX xð Þ ð3:16Þ

where fH|X(h|x) is the posterior distribution of the parameter H, fX|H(x|h) is the
so-called sampling density of the observation x, fH(h) is the prior distribution of H,
and fX(x) is the marginal probability of x. The sampling density fX|H(x|h) is
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proportional to the likelihood function and only differs by a multiplicative constant
that makes the integral of the density over its domain equal to 1. The marginal
probability fX(x) can be treated as the marginal likelihood of x and acts as a nor-
malizing constant to make the posterior density a proper PDF. Since the sampling
density is proportional to the likelihood function, and the denominator simply acts
as a scaling constant that makes the posterior density a proper PDF, Bayesian
inference in Eq. (3.16) is often expressed as “posterior is proportional to likelihood
times prior,” or in a mathematical form as, “posterior / likelihood � prior.” Let us
now consider a Bayesian normal inference model as one example to illustrate the
inference procedure.

Example 3.8 Suppose that we have a set of random samples x = {x1, x2, …,
xM} drawn from the normal PDF fX(x; l, r) of a random variable X, where the
mean l is unknown and the standard deviation r is known. Assume that the
prior distribution of l, fM(l), is a normal distribution with its mean u and
variance s2. Determine the posterior distribution of l, fM|X(l|x), given the
random observations x.

Solution
First, we compute the conditional probability of obtaining x, given l, as

fXjM xjlð Þ ¼
YM
i¼1

1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
xi � l
r

� �2� �

¼ 2pr2
	 
�n=2

exp � 1
2r2

XM
i¼1

xi � lð Þ2
" #

Next, we compute the numerator in Eq. (3.16) as

fXjM xjlð ÞfM lð Þ ¼ 2pr2
	 
�n=2

2ps2
	 
�1=2

exp � 1
2r2

XM
i¼1

xi � lð Þ2 � 1
2s2

l� uð Þ2
" #

¼ K1 x1; . . .; xM ; r; u; sð Þ exp � M
2r2

þ 1
2s2

� �
l2 þ M�x

r2
þ u

s2

� �
l

� �

We then attempt set up a square inside the exponent as

fX;M x; lð Þ ¼ K2 x1; . . .; xM ; r; u; sð Þ exp � 1
2

M
r2

þ 1
s2

� �
l�

M�x
r2 þ u

s2
M
r2 þ 1

s2

 !2
2
4

3
5

¼ K2 x1; . . .; xM ; r; u; sð Þ exp � 1
2

M
r2

þ 1
s2

� �
l�Ms2�xþ r2u

Ms2 þ r2

� �2
" #
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Since, as previously mentioned, the denominator fX(x1, x2, …, xM) in
Eq. (3.16) is a scaling constant and does not vary with l, we then derive the
posterior distribution of l as

fMjX ljxð Þ ¼ K3 x1; . . .; xM ; r; u; sð Þ exp � 1
2

M
r2

þ 1
s2

� �
l�Ms2�xþ r2u

Ms2 þ r2

� �2
" #

Clearly, this is a normal distribution with the mean and variance as

û ¼ Ms2�xþ r2u
Ms2 þ r2

; ŝ2 ¼ M
r2

þ 1
s2

� ��1

¼ r2s2

Ms2 þ r2

Observe that the Bayesian posterior estimate of l is essentially a
weighted-sum of the sample mean �x and the prior mean u. In contrast, the
maximum likelihood estimator is simply the sample mean (see Example 3.3).
Note also that, as the number of samples M approaches infinity, the Bayesian
estimate becomes equal to the maximum likelihood estimator, since the
sample data tend to have a predominant influence over the prior information.
However, in cases where there is a small sample size, the prior information
plays an important role, especially when the prior variance s2 is small (or, in
other words, when the prior information is precise).

As can be observed in Example 3.8, Bayesian inference and the MLE provide
essentially the same estimate if we have an extremely large sample size. In engi-
neering practice, however, we often have very limited sample data due to the
expense and time demands associated with obtaining the data. In such cases, the
MLE may not give an accurate or even reasonable estimate. In contrast, Bayesian
inference gives a better estimate if we assume a reasonable prior distribution. The
term “reasonable” means that the prior assumption is at least consistent with the
underlying distribution of the population. If there is no such consistency, Bayesian
inference may give an erroneous estimate due to the misleading prior information.

Another important observation we can make from Example 3.8 is that the
posterior distribution shares the same form (i.e., normal distribution) with the prior
distribution. In such cases, we say that the prior is conjugate to the likelihood. If we
have a conjugate prior, the posterior distribution can be obtained in an explicit form.
Conjugacy is desirable in Bayesian inference, because using conjugate priors/
likelihoods with known forms significantly eases the evaluation of the posterior
probability. Looking back at Example 3.8, we note that the normal (or Gaussian)
family is conjugate to itself (or self-conjugate): if the likelihood function is normal,
choosing a normal prior ensures that the posterior is also normal. Other conjugate
Bayesian inference models include the binomial inference, exponential inference,
and Poisson inference. Among these inference models, the binomial inference is the
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most widely used. Consider a binomial sequence of n experimental trials with
x occurrences of an outcome whose probability of occurrence p0 is unknown.
Assume a beta prior B(a, b) for the unknown binomial probability p0, expressed as

fP0 p0ð Þ ¼ C a; bð Þ
C að ÞC bð Þ p

a�1
0 1� p0ð Þb�1 ð3:17Þ

Based on the form of the binomial distribution, the likelihood function can be
expressed as

L x; n; p0ð Þ ¼ C n; xð Þpx0 1� p0ð Þn�x/ px0 1� p0ð Þn�x ð3:18Þ

We can then obtain the posterior distribution of p0, expressed as

fP0jX p0jxð Þ ¼ C xþ a; nþ b� xð Þ
C xþ að ÞC nþ b� xð Þ p

xþ a�1
0 1� p0ð Þnþ b�x�1 ð3:19Þ

The posterior distribution follows the same form (i.e., the beta distribution) as the
prior distribution, which suggests that the beta prior is conjugate to the binomial
likelihood. In Example 3.9, we demonstrate this conjugate inference model with a
simple reliability analysis problem.

Example 3.9 Suppose we want to quantify the reliability of a product by
conducting a sequence of 10 repeated tests. The product passes 8 of these
tests and fails at the other two. We assume a beta prior B(4, 4) for the
probability of success (or reliability) p0 in each test. Compute the posterior
distribution of p0, given the reliability testing data.

Maximum likelihood 
estimator

Fig. 3.7 Prior and posterior distributions for Example 3.9
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Solution
The parameters in this example take the following values: a = 4, b = 4,
x = 8, n = 10. The posterior distribution of p0 can be obtained, according to
Eq. (3.19), as B(x + a, n + b − x), or B(12, 6). The prior and posterior dis-
tributions of p0 are plotted in Fig. 3.7. The figure shows that the posterior
distribution results—from a combination of the prior information and the
testing data (evidence)—lie between the prior distribution and the maximum
likelihood estimator (which exclusively relies on the testing data).

In many engineering problems, the conjugacy condition does not hold, and
explicit solutions of posterior distributions cannot be readily obtained through
simple mathematical manipulations. In such cases, we are left to draw random
samples from posterior distributions to approximate the distributions. A commonly
used simulation method for drawing samples from a posterior distribution is
referred to as Markov chain Monte Carlo (MCMC), in which two important sam-
pling techniques, namely the Metropolis–Hastings algorithm and Gibbs sampling,
are often used. An in-depth discussion of these techniques is beyond the scope of
this book. Readers are recommended to refer to [3] for detailed information.

In Bayesian updating, Bayesian inference expressed in Eq. (3.16) is often per-
formed iteratively over time. In other words, after observing the initial set of testing
data, Bayesian inference is performed to obtain the resulting posterior probability,
and this posterior probability can then be treated as a prior probability for com-
puting a new posterior probability as the next set of testing data becomes available.
Figure 3.8 shows the overall procedure of Bayesian updating for a distributional
parameter H. In each updating iteration, Bayesian inference is performed with the
most “up-to-date” prior information and the most recent data. The posterior density
of H after one iteration becomes the prior density for the next iteration. The
capability of continuous updating is an attractive feature of Bayesian statistics that
is useful for parameter estimation with evolving data sets or random variables.

Posterior Density
fΘ|X(θ |x)

Prior Density
fΘ(θ )

Observed data, X

Likelihood function
fX|Θ(x|θ)

Bayesian
Updating

Mechanism

Updating
Iteration, i = i + 1

Fig. 3.8 Flowchart of Bayesian updating
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3.3 Exercises

3:1 Recall Problem 2.2 in Chap. 2. Answer the following question based on the 30
sample data obtained from the fatigue tests described in that problem.

(1) Use normal, Weibull, and lognormal distributions. Find the most suitable
parameters of the three distributions for the fatigue ductility coefficient
(ef′) and exponent (c) using the MLE method.

(2) Find the most suitable distribution for the data set (ef′, c) using the
chi-square goodness-of-fit test.

(3) Verify the results using the graphical methods described in the chapter (a
histogram and a probability plot).

3:2 Recall Problem 2.3 in Chap. 2. Answer the following question based on the 50
sample data obtained from LCD module dent tests.

(1) Use normal, Weibull, and uniform distributions. Find the most suitable
parameters of the three distributions for the failure displacement (df) and
failure force (Ff) using the MLE method.

(2) Find the most suitable distributions for the data set (df, Ff) using the
chi-square goodness-of-fit test.

(3) Verify the results using probability plots.

3:3 Suppose that we are interested in identifying the probability distribution for
the number of cars passing through the main gate of the University of
Maryland per minute. The data have been collected by a group of students and
are shown in Table 3.6.

Table 3.6 Observed frequency distribution for the number of cars

Vehicles per minute Observed frequency Vehicles per minute Observed frequency

40 14 53 102

41 24 54 96

42 57 55 90

43 111 56 81

44 194 57 73

45 256 58 64

46 296 59 61

47 378 60 59

48 250 61 50

49 185 62 42

50 171 63 29

51 150 64 18

52 110 65 15
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(1) Determine whether or not a Poisson distribution is an appropriate
probability distribution for the data (a = 0.05).

(2) Verify the results using an exponential probability plot.

3:4 Suppose it is desired to estimate the failure rate of an electronic component.
For this purpose, a test has been performed on 100 components;
time-to-failure (TTF) data are summarized in Table 3.7. Answer the following
questions:

(1) Construct a histogram of TTF.
(2) Find a probability distribution model fT(t) and its parameters for the TTF

data (use the MLE method for parameter estimation and the K-S
goodness-of-fit test for distribution selection).

(3) Attempt to update the TTF mean value (h) with aggregation of 100 TTF
data using Bayesian inference. Assume that the TTF follows a normal
distribution with standard deviation of r = 315.16 and that the prior
distribution fH(h) of h follows a normal distribution with the mean u ¼
1750:0 and standard deviation s = 500.

Table 3.7 Data for 100 electronic components’ time-to-failure (TTF) [minutes]

1703.2 1071.4 2225.8 1826.5 1131.0 2068.9 1573.5 1522.1 1490.7 2226.6

1481.1 2065.1 1880.9 2290.9 1786.4 1867.2 1859.1 1907.5 1791.8 1871.0

1990.4 2024.1 1688.6 1962.7 2191.7 1841.0 1814.1 1918.1 2237.5 1396.8

1692.8 707.2 2101.3 2165.4 1975.2 1961.6 2116.7 1373.0 1798.8 2248.4

1872.3 1597.8 1865.1 742.8 1436.7 1380.8 2258.2 1960.0 2182.8 1772.7

2003.6 1589.4 1988.3 1874.9 1859.0 2051.9 1763.0 1854.6 1974.7 2289.9

1945.7 1774.8 1579.6 1430.5 1855.0 1757.9 1029.3 1707.2 1864.7 1964.8

1719.4 1565.2 1736.8 1759.4 1939.4 2065.7 2258.5 2292.8 1452.5 1692.2

2120.7 1934.8 999.4 1919.9 2162.4 2094.9 2158.2 1884.2 1748.7 2260.3

1040.8 1535.0 1283.4 2267.7 2100.3 2007.9 2499.8 1902.9 1599.6 1567.5

Table 3.8 Data for 100 cutting tools’ time-to-failure (TTF) [minutes]

839.3 838.8 959.3 950.5 873.9 948.3 859.8 898.7 903.6 1031.6

852.4 891.5 965.0 856.1 739.0 895.3 916.8 921.7 1093.3 863.7

965.0 927.1 888.6 918.4 1025.4 811.3 960.4 826.9 875.2 980.7

905.6 982.7 892.0 928.4 918.7 1071.5 824.1 743.9 915.0 1064.0

753.3 787.6 836.0 941.7 951.7 791.8 949.1 874.6 975.8 948.2

1046.2 817.6 939.5 850.7 809.7 936.6 1040.8 947.1 857.9 901.4

952.3 848.5 999.0 1007.7 915.8 931.3 907.1 966.3 810.8 771.2

776.4 913.7 1003.7 978.0 1035.7 1065.8 1107.6 766.0 772.6 999.1

870.0 1007.6 877.7 709.8 958.1 874.1 846.0 746.2 994.0 954.7

916.6 1054.9 917.4 812.6 963.4 1017.5 1122.9 865.1 938.8 837.5
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3:5 Suppose it is desired to estimate the failure rate of a machine cutting tool.
A test can be performed to estimate its failure rate. The failure times in
minutes are shown in Table 3.8. Answer the following questions:

(1) Construct a histogram of TTF.
(2) Find a probability distribution model fT(t) and its parameters for the TTF

data (use the MLE method for parameter estimation and the K-S
goodness-of-fit test for distribution selection).

(3) Attempt to update the TTF mean value (h) with aggregation of 100 TTF
data using Bayesian inference. Assume that the TTF follows a normal
distribution with a standard deviation of r = 80 and that the prior dis-
tribution fH(h) of h follows a normal distribution with the mean u ¼ 1000
and the standard deviation s = 100.

3:6 The TTF of a machine has an exponential distribution with parameter k.
Assume that the prior distribution for k is exponential with a mean of 100 h.
We have five observed TTF from five machines; the average TTF is 1200 h.

(1) Compute the posterior distribution of k based on our observations.
(2) Based on the posterior distribution, what proportion of the machines will

fail after 1000 h?
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Chapter 4
Fundamentals of Reliability Analysis

Failures of engineered systems (e.g., vehicle, aircraft, and material) lead to sig-
nificant maintenance/quality-control costs, human injuries, and fatalities. Examples
of such system failures can be found in various engineering fields: the Chernobyl
disaster in Russia (1986), the collapse of the I-35 W Mississippi River Bridge in the
U.S. (2007), the explosion of a compressed natural gas (CNG) bus in the Republic
of Korea (2010), and the lithium-ion battery fire/smoke on Boeing 787 Dreamliners
in the U.S. and Japan (2013). Many system failures can be traced back to various
difficulties in evaluating and designing complex systems under highly uncertain
manufacturing and operational conditions. One of the greatest challenges in design
of an engineered system is to ensure high reliability and maintainability of the
system during its life-cycle. Our attempt to address this challenge begins with the
discussion of the fundamentals of reliability analysis. This discussion will be
separately conducted for time-independent and time-dependent reliability analyses,
with an aim to facilitate more in-depth discussions in later chapters.

4.1 Definition of Reliability

The formal definition of reliability is the probability of an engineered system to
perform its required function under prescribed conditions (for a specified period).
The use of parentheses in this definition indicates the existence of two types of
reliabilities, namely time-independent reliability and time-dependent reliability.
Time-independent reliability is typically used when designing an engineered system
for the very beginning of the system’s life-cycle (i.e., it generally does not consider
health degradation that occurs during system operation). Time-dependent reliability
is often used to assess the operational reliability of an engineered system through
the system’s life-cycle (i.e., time-dependent reliability analysis takes into account
health degradation that occurs during system operation).
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4.1.1 Time-Independent Reliability

Time-independent reliability is defined as the probability that the actual perfor-
mance of an engineered system meets the required or specified design performance
under various uncertainty sources (e.g., material properties, geometric tolerances,
loading conditions). This definition is often used in the design of civil structural
systems, mechanical systems, and aerospace systems. In order to formulate the
time-independent reliability in a mathematical framework, random variables are
often used to model uncertainty sources. The time-independent reliability can then
be formulated as

R Xð Þ ¼ P G Xð Þ� 0ð Þ ¼ 1� P G Xð Þ[ 0ð Þ ð4:1Þ

where the random vector X = (X1, X2,…, XN)
T models uncertainty sources, such as

material properties, geometric tolerances, and loading conditions; G(X) is a system
performance function, and the system success event is Esys = {G(X) � 0}. The
uncertainty of the vector X further propagates and leads to the uncertainty in the
system performance function G. In reliability analysis, equating the system per-
formance function G to zero, i.e., G = 0, gives us the so-called limit-state function,
which separates the safe region G(X) � 0 from the failure region G(X) > 0.
Depending on the specific problems, a wide variety of system performance func-
tions can be defined to formulate time-independent reliabilities. The most
well-known example is the safety margin between the strength and load of an
engineered system, which will be discussed in Sect. 4.2. The concept of
time-independent reliability analysis in a two-dimensional case is illustrated in
Fig. 4.1. The dashed lines represent the contours of the joint PDF of the two
random variables X1 (manufacturing tolerance) and X2 (operational factors). The
basic idea of reliability analysis is to compute the probability that X is located in the
safe region {G � 0}.

X1: manufacturing tolerance

X 2
: o

pe
ra

tio
na

l 
fa

ct
or

G ≤ 0
Safe region

G > 0
Failure 
region

fX(x)
Fig. 4.1 Schematic of
time-independent reliability
analysis in a two-dimensional
space. Reprinted (adapted)
with permission from Ref. [1]
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4.1.2 Time-Dependent Reliability

Unlike time-independent reliability, time-dependent reliability takes into account
the life-cycle health degradation of an engineered system and is defined according
to the failure-free operating time of the system. Formally, time-dependent reliability
can be defined as the probability that the actual life (or failure-free operating time)
of an engineered system exceeds the required or specified design life. For any
specific time t, the time-dependent reliability can be formulated as

RT tð Þ ¼ P T Xð Þ[ tð Þ ¼ 1� P T Xð Þ� tð Þ ¼ 1� FT tð Þ ð4:2Þ

where X is the random vector representing engineering uncertainty factors, and the
time-to-failure (TTF) T(X) of the system is defined as the time when the system’s
performance function (or health condition) is worse than a predefined critical value.
The equation above indicates that time-dependent reliability analysis requires
modeling of the underlying TTF distribution. This can be done by using a wide
variety of parametric probability distributions; the most commonly used are
exponential distribution, Weibull distribution, and normal distribution. The relia-
bility functions under these distributions will be discussed in Sect. 4.3.

4.2 Reliability Function (Time-Independent)

Consider the most well-known performance function, i.e., the safety margin
between the strength S of an engineered system and the load L on this system. This
performance function takes the following form

G ¼ L� S ð4:3Þ

The strength S and load L are random in nature and their randomness can be
characterized by two PDFs fS(s) and fL(l), respectively. Under the assumption of
normal distributions, these two PDFs are plotted in Fig. 4.2a. The probability of
failure depends on the intersection (shaped) area of the two PDFs, where the load
on the system might exceed its strength. Let lS and lL, respectively, denote the
means of S and L; let rS and rL, respectively, denote the standard deviations of
S and L. We can then compute the mean and standard deviation of the normally
distributed performance function G as

lG ¼ lL � lS

rG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ r2S � 2qLSrLrS

q ð4:4Þ

Under the assumption of statistical independence between S and L, we can compute
the reliability based on the standard normal CDF as
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R ¼ P G� 0ð Þ ¼ P
G� lL � lSð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2L þ r2S
p � 0� lL � lSð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2L þ r2S
p

 !

¼ P Z� lS � lLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ r2S

p
 !

¼ U
lS � lLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ r2S

p
 ! ð4:5Þ

Based on the equation above and our intuition, we can reduce the intersection
area and thus increase the reliability through either of the following two strategies:

• Increase the relative distance between the two means: As the relative distance lS
− lL between the means increases, the numerator of the standard normal value
in Eq. (4.5) increases. Accordingly, the standard normal CDF value, or relia-
bility, increases.

• Decrease the variances of two variables S and L: Reduction in either variance
leads to a reduction in the denominator of the standard normal value in
Eq. (4.5). The decrease of the denominator results in an increase of the standard
normal CDF value, or reliability.
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Fig. 4.2 PDFs of load and
strength (a) and of the system
performance function G (b)
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The PDF of the system performance function is plotted in Fig. 4.2b, where the
probability of failure, or one minus reliability, is indicated by the shaded area. We
note that the distance between the mean performance function (safety margin) and
the limit state G = 0 is equal to the standard deviation rG multiplied by a factor b.
In reliability analysis, this factor is named the reliability index, and is expressed as

b ¼ U�1 Rð Þ ¼ lS � lLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ r2S

p ð4:6Þ

The reliability index provides an alternative measure of reliability from the per-
spective of a standard normal distribution. In Chap. 5, we will see that the reliability
index is a very useful measure for reliability assessment.

Example 4.1 Suppose that the coefficients of variation for the load and
strength are qL = 0.2 and qS = 0.1, respectively. Assume both variables
follow normal distributions. Determine the ratio of means lS/lL required to
achieve a reliability no less than 0.99.

Solution
According to the Appendix in Chap. 5, the reliability index corresponding to
a 0.99 reliability is b = 2.3263. The reliability index can be mathematically
expressed as

b ¼ lS � lLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ r2S

p ¼ lS=lL � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2L þ lS=lLð Þ2q2S

q

By substituting j = lS/lL (note that j > 1), we find

b ¼ j� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2L þ j2q2S

p
The equation above can be written as a quadratic equation with j as the only
unknown, expressed as

1� b2q2S
� �

j2 � 2jþ 1� b2q2L
� � ¼ 0

Solving this equation gives us two solutions

j ¼ 2� 4� 4 1� b2q2S
� �

1� b2q2L
� �� �1=2

2 1� b2q2S
� �

¼ 2� 4� 4 1� 2:326320:12ð Þ 1� 2:326320:22ð Þ½ �1=2
2 1� 2:326320:12ð Þ

¼ 0:5193 or 1:5951

Since 0.5193 < 1 it does not satisfy j > 1; thus, the final solution is 1.5951.
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Let us next consider a general case where the normality assumption may not
hold. To calculate the reliability, we can perform a two-dimensional integration as

R ¼ P L� S� 0ð Þ ¼
Zþ1

0

Zþ1

s

fL lð Þdl
0
@

1
AfS sð Þds ð4:7Þ

Observe that the integration above is performed over the safe region ΩS that is
defined as ΩS = {x = (L, S)T: G(x) � 0}. The integration above can thus be
equivalently expressed as

R ¼
ZZ

XS
fL lð ÞfS sð Þdlds ¼

ZZ
XS
fX xð Þdx ð4:8Þ

where fX(x) denotes the joint PDF of the vector X. Now let us further generalize this
calculation to any multi-dimensional random vector whose joint PDF may or may
not be separable. In this general case, the time-independent reliability can be for-
mulated as a multi-dimensional integration of the joint PDF over a safe region

R ¼
Z

� � �
Z
XS

fX xð Þdx ð4:9Þ

where fX(x) denotes the joint PDF of this random vector, and the safe region ΩS is
defined as XS ¼ x : G xð Þ � 0f g.

In engineering practice, however, it is extremely difficult, if not impossible, to
perform multi-dimensional numerical integration when the performance function
involves a large number of random input variables. The search for efficient com-
putational procedures to perform this multi-dimensional integration has resulted in a
variety of numerical and simulation methods, such as first- and second-order reli-
ability methods (FORM/SORM), direct or smart Monte Carlo simulation (MCS),
the dimension reduction (DR) method, the stochastic spectral method, and the
stochastic collocation method. These methods will be introduced in Chap. 5.

Example 4.2 Given the joint density function of two random variables X and Y

fXY x; yð Þ ¼
6�x�y

8 ; if 0\x\2; 2\y\4
0; otherwise

�

and the performance function of an engineered system G(X, Y) = 2X − Y,
compute the reliability R of this system.
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Solution
Here, the safe region XS can be defined as ΩS = {(X, Y): G(X, Y) � 0} =
{(X, Y): 2X � Y}. Given the joint density function, this is equivalent to
ΩS = [{X: 0 < X < 1}\ {Y: 2 < Y < 4}][ [{X: 1 � X < 2}\ {Y: Y �
2X}]. Reliability can be computed by performing a two-dimensional inte-
gration over this safe region ΩS, expressed as

R ¼
Z1
0

Z4
2

fXY x; yð Þdydxþ
Z2
1

Z4
2x

fXY x; yð Þdydx

¼
Z1
0

Z4
2

6� x� y
8

dydxþ
Z2
1

Z4
2x

6� x� y
8

dydx

¼
Z1
0

3� x
4

dxþ
Z2
1

x� 2ð Þ2
2

dx ¼ 3
4
� x2

8

����
1

0
þ x� 2ð Þ3

6

�����
2

1

¼ 19
24

4.3 Reliability Function (Time-Dependent)

Most electrical, electronic, and mechanical systems deteriorate during use as a
result of elevated operating temperatures, chemical changes, mechanical wear,
fatigue, overloading, and for a variety of other reasons. Failures of such systems
may eventually occur as a result of this deterioration. Time-dependent reliability
considers the life-cycle health degradation of an engineered system and is defined
based on the failure-free operating time of the system.

4.3.1 Reliability and Failure Rate Functions

Given the TTF distribution fT(t) of an engineered system, time-dependent reliability
can be formulated as

RT tð Þ ¼ P T Xð Þ[ tð Þ ¼
Zþ1

t

fT tð Þdt ¼ 1� FT tð Þ ð4:10Þ
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The expected TTF, known as the mean-time-to-failure (MTTF), can be defined as

MTTF ¼ E½T � ¼
Z1
0

sfT sð Þds ð4:11Þ

In a life test of replaceable units, the mean of all the sample units approaches the
MTTF as the number of tested units approaches infinity. By equating fT(t) to the
negative derivative of RT(t), we can derive another useful formula of MTTF as

MTTF ¼ �
Z1
0

s
@RT sð Þ
@s

ds ¼ � tRT tð Þ½ �10 þ
Z1
0

RðsÞds

¼
Z1
0

RT sð Þds
ð4:12Þ

Insights can be gained into failure mechanisms by examining the behavior of the
so-called failure rate. The failure rate, denoted by h(t), can be derived from the
reliability and the TTF distribution. Let h(t)Dt be the conditional probability that the
system will fail at some time t < T < t + Dt given that it has not yet failed at
T = t. This conditional probability can be expressed as

h tð ÞDt ¼ P T\tþDtjT[ tf g ¼ P T [ tð Þ \ T\tþDtð Þf g
P T[ tf g

¼ P t\T\tþDtf g
R tð Þ ¼ fT tð ÞDt

R tð Þ
ð4:13Þ

which gives the failure rate (or hazard) function as

h tð Þ ¼ fT tð Þ
R tð Þ ð4:14Þ

The failure rate of a large population of statistically independent system units
can often be represented by a bathtub curve (see Fig. 4.3). It consists of three
distinct parts:

• Burn-in failures: The first part starts with a high “infant mortality” failure rate,
which rapidly decreases over time. These failures can be attributed to manu-
facturing defects in materials and components.

• Constant failure rate: The second part is the constant failure rate, known as
random failures.

• Wear-out failures: The third part shows an increasing failure rate over time due
to health degradation (e.g., corrosion, fatigue, wear) of the system units.
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The bathtub shape of the failure rate curve can be attributed to the existence of both
defective and non-defective units in the population. In the first part, the failure rate
curve is dominated by the initially defective units (burn-in failures) whose failure
rate rapidly decreases until these defective units fail. In the second part, the failure
rate remains at a low constant since initially defective units have failed and the
remaining units are not yet experiencing wear-out failures. In the third part, the
non-defective units become dominant but the units begin to wear out over time,
leading to an increasing failure rate.

There are a handful of parametric models that have successfully served as
population models for failure times arising from a wide range of products and
failure mechanisms. Sometimes there are probabilistic arguments based on the
physics of the failure mode that tend to justify the choice of the model. Other times,
the model is used solely because of its empirical success in fitting actual failure
data. The next section discusses some popular parametric models.

4.3.2 Parametric Time-to-Failure Distributions

This section presents the most commonly used probability distributions for mod-
eling the TTF distribution.

Exponential Distribution

With the assumption of a constant failure rate, the TTF follows an exponential
distribution with only one unknown parameter, expressed as

fT tð Þ ¼ ke�kt ð4:15Þ

Time

Increasing 
Failure Rate

Constant
Failure Rate

Decreasing
Failure 

Rate
Observed

Failure Rate

Constant (Random) 
Failures

Fa
ilu

re
 R

at
e Early 

“Infant 
Mortality” 

Failure
Wear-Out
Failures

Fig. 4.3 Bathtub curve for
the failure rate (or hazard)
function
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for t � 0. The exponential distribution is the simplest among all life distributions.
The reliability function can be easily obtained as

RT tð Þ ¼ e�kt ð4:16Þ

TheMTTF is the mean value of the exponential random variable t, i.e., MTTF = 1/k.
As shown in Eq. 4.12, the MTTF can also be computed by integrating the reliability
function from zero to infinity as

MTTF ¼
Zþ1

0

RT sð Þds¼
Zþ1

0

e�ksds

¼ � 1
k
e�ks þ1

0

�� ¼ 1
k

ð4:17Þ

The failure rate (or hazard) function can be easily computed as h(t) = 1/k. The
reliability functions and failure rate functions with different parameters are graph-
ically compared in Fig. 4.4. As k increases, the reliability decreases more rapidly
over time.

Example 4.3 Suppose the TTF of an engineered system follows an expo-
nential distribution with the PDF fT(t) = kexp(−kt), for t � 0, and fT(t) = 0,
for t < 0. Find the conditional probability that the system will fail after time
a + b, given that the system does not fail before time a.

Fig. 4.4 Reliability functions (a) and failure rate functions (b) for exponential distribution
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Solution
This conditional probability can be computed as

P t[ aþ bjt[ að Þ ¼ P t[ aþ bð Þ
P t[ að Þ ¼ RT t ¼ aþ bð Þ

RT t ¼ að Þ

¼ e�k aþ bð Þ

e�ka
¼ e�kb

Note that this conditional reliability equals the unconditional reliability at
time t = b, i.e., RT(t = b). This suggests that, if the TTF of an engineered
system follows an exponential distribution, the future failure behavior of this
system does not depend on how long it has already reliably operated. This
phenomenon is known as the memoryless property of the exponential
distribution.

Weibull Distribution

A generalization of the exponential distribution is the Weibull distribution, which
can model a constant, decreasing, or increasing failure rate function. The density of
a Weibull TTF distribution can be expressed as

fT tð Þ ¼ k
k

t
k

	 
k�1
e�

t
kð Þk ð4:18Þ

Here, t > 0, k > 0 is the scale parameter, and k > 0 is the shape parameter. The
reliability function can be computed by subtracting the CDF from 1 as

RT tð Þ ¼ 1�
Z t

0

fT sð Þds ¼ e�
t
kð Þk ð4:19Þ

The MTTF is the mean value of the exponential random variable t, expressed as

MTTF ¼ C 1þ 1=kð Þ
k

ð4:20Þ

The failure rate function can be easily computed as

h tð Þ ¼ k
k

t
k

	 
k�1
ð4:21Þ
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From the equation above, we can see that the temporal trend of the failure rate
depends on the shape parameter k. This dependence is illustrated in Fig. 4.5. When
k = 1, the failure rate is a constant and the Weibull distribution reduces to the
exponential model with MTTF = 1/k. When k < 1, the failure rate decreases
monotonically and can be used to represent the case of infant mortality. When
k > 1, the failure rate increases monotonically and can be used to represent the case
of wear-out aging. As mentioned before, the Weibull distribution with k = 1 is an
exponential distribution with the parameter k. Note that, for k > 4, the Weibull
distribution becomes symmetric and bell-shaped, like the curve of a normal
distribution.

The reliability functions and failure rate functions with different parameters are
compared in Fig. 4.6. As k increases, the reliability decreases more slowly over
time. For k = 1, the failure rates remain constant over time. For k > 1, the failure
rates increase monotonically over time.

t

h(
t)

t

h(
t)

t

h(
t)

(a) (b) (c)

Fig. 4.5 Three cases of a failure rate: k = 1 (a); k > 1 (b); k < 1 (c)

Fig. 4.6 Reliability functions (a) and failure rate functions (b) for a Weibull distribution
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Example 4.4 Assume that the failure rate function of a solid-state power unit
takes the following form (t: hrs)

h tð Þ ¼ 0:003
t

500

	 
0:5
Answer the following questions.

(1) Compute the reliability of this power unit at t = 50 h.
(2) If the unit has operated for 50 h, compute the probability that it will

operate for another 50 h.

Solution

(1) The form of the failure rate function indicates that the TTF of this power
unit follows a Weibull distribution. From the failure rate function, we can
easily derive the two distributional parameters as k = 500 and k = 1.5.
Then, the reliability at t = 50 h can be computed as

RT 50ð Þ ¼ e�
50
kð Þk ¼ e�

50
500ð Þ1:5 � 0:9689

(2) The conditional probability that the unit fails after 100 h, given that it has
not failed before 50 h, can be computed as

P t[ 100jt[ 50ð Þ ¼ P t[ 100ð Þ
P t[ 50ð Þ ¼ RT t ¼ 100ð Þ

RT t ¼ 50ð Þ � 0:9438

Normal Distribution

Another widely used TTF distribution is the normal, or Gaussian, distribution. The
density of this distribution can be expressed as

fT t; l; rð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
t � l
r

	 
2� �
ð4:22Þ

where l � 0 is the mean or MTTF, and r > 0 is the standard deviation of the TTF.
The reliability function can be expressed in terms of the standard normal CDF as

RT tð Þ ¼
Zþ1

t

1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
t � l
r

	 
2� �
ds ¼ 1� U

t � l
r

	 

ð4:23Þ
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The failure rate function is

hðtÞ ¼ fT t; l; rð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2
t � l
r

	 
2� �
1� U

t � l
r

	 
h i�1
ð4:24Þ

Examples for modeling TTF with normal distributions include the useful life of the
tread of a tire and the wear-out time of the cutting edge of a machine tool. The
reliability functions and failure-rate functions with different parameters are graph-
ically compared in Fig. 4.7. Two observations can be made: (i) as l increases, the
reliability curve shifts to the right; (ii) the shape of the reliability curve is deter-
mined by r, and a decrease of r leads to the compression of the curve along the
center line t = l.

4.3.3 Remarks on Time-Dependent Reliability

The main task in time-dependent reliability analysis is to accurately estimate the
TTF distribution of an engineered system. The classical approach to this estimation
is to fit a probability distribution to the TTF data (censored and uncensored)
obtained through accelerated life testing (ALT), other reliability testing in the lab,
and/or through performance trends observed in products in the field. This classical
approach is capable of providing an instantaneous reliability estimate for an engi-
neered system unit based on the degradation characteristics of other similar units.
However, this approach only provides a population-wise reliability estimate that
takes the same value for the entire population of units. In engineering practice, we
are often interested in assessing the reliability of each individual unit under its
actual use conditions to determine the advent of a failure and mitigate potential risk
throughout the life-cycle. That is to say, we need a unit-wise, time-dependent

Fig. 4.7 Reliability functions (a) and failure rate functions (b) for a normal distribution
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reliability analysis method (see Fig. 4.8 for the difference between population- and
unit-wise reliability analysis) to ensure high operational reliability of an engineered
system throughout its life-cycle. To overcome the limitations of classical reliability
analysis, prognostics and health management (PHM) has recently emerged as a key
technology to (i) evaluate the current health condition (health monitoring) and
(ii) predict the future degradation behavior (health prognostics) of an engineered
system throughout its life-cycle. This emerging discipline will be discussed in
Chap. 8 of this book.

4.4 Exercises

4:1 Consider a cantilever beam-bar system with an ideal elastic-plastic cantilever
beam supported by an ideal rigid-brittle bar, with a load applied at the mid-
point of the beam, as shown in Fig. 4.9.
Suppose that a failure mode consists of two failure events: the formation of a
hinge at the fixed point of the beam (failure event �E1), followed by the fracture
of the brittle bar (failure event �E2). The two safety events can be expressed as:

E1 ¼ X; L;Mj3LX=8�M� 0f g;
E2 ¼ X; L;M; T jLX �M � 2LT � 0f g

The statistical information of the independent input random variables X and
M is given in Table 4.1. The two dimensions L and T are assumed to be
deterministic: L = 5.0 and T = 1000.

(1) Assuming lX = 60, compute the reliabilities R1 and R2 corresponding to
E1 and E2.

(2) Determine the value of lX so that the minimum value of R1 and R2 is
greater than 0.90.

Lifetime

Li
fe

 P
D

F

Unit ID

1
2

3
4

Unit-wise (PHM)

Unit-
dependent

Lifetime
Li

fe
 P

D
F

Unit ID

1
2

3
4

Population-wise (classical)

Unit-
independent

Fig. 4.8 Population- and unit-wise time-dependent reliability analyses
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(3) Assuming that X and M have a correlation coefficient qXM = 0.90 and
that lX = 60, compute the reliabilities R1 and R2 corresponding to E1 and
E2.

4:2 A cantilever beam is shown in Fig. 4.10. The length of the beam is 100 in. The
width and thickness are represented by w and t, respectively. The free end of
the beam is subjected to two transverse loads X and Y along the orthogonal
directions, as shown in Fig. 4.10.
The stress limit-state function is expressed as

G ¼ rðX; YÞ � S ¼ 600
wt2

Y þ 600
w2t

X

 �
� S ¼ 0

where S is the yield strength, and w and t are the design parameters (fixed in
this problem: w = 2 in and t = 1 in). S, X, and Y are independent random
variables whose means and standard deviations are summarized in Table 4.2.

(1) Calculate the mean and standard deviation of r(X, Y).
(2) Compute the time-independent reliability, defined as P(G � 0).

T

X

M

L L

Fig. 4.9 Cantilever beam-bar
system subjected to a vertical
load. Reprinted (adapted)
with permission from Ref. [2]

Table 4.1 Statistical
information of random
variables for Problem 4.1

Random variable M X

Distribution Normal Normal

Mean 150 lX
Standard deviation 30 20

L Y

X

w

t

Fig. 4.10 Cantilever beam subjected to end transverse loads

98 4 Fundamentals of Reliability Analysis



www.manaraa.com

(3) Assume that the mean of S degrades in the following manner:
lS(t) = 400,000 − 100t while the variation of S remains unchanged.
Develop a time-dependent reliability function.

4:3 Recall Problem 3.4 in Chap. 3. Suppose the target life of the electronic
component is set to 2000 min. R(t) = P(T > 2000 min). Answer the following
questions:

(1) Construct a reliability function based on the identified probability dis-
tribution of TTF.

(2) Determine the MTTF, the standard deviation of TTF, and the hazard
function.

(3) Compare the reliability estimates (i) from nf/N according to the TTF data
and (ii) from the constructed reliability function (t = 2000 min), where nf
is the number of failed components and N (=100) is the total number of
components.

4:4 Recall Problem 3.5 in Chap. 3. Suppose the target life of the machine cutting
tool is set to 800 min, i.e., R(t) = P(T > 800 min). Answer the following
questions:

(1) Construct a reliability function.
(2) Determine the MTTF, the standard deviation of TTF, and the hazard

function.
(3) Compare the reliability estimates (i) from nf/N according to the TTF data

and (ii) from the constructed reliability function (t = 800 min), where nf
is the number of failed components and N (=100) is the total number of
components.

4:5 Suppose that 100 identical components are tested for 1000 h. Based on the
historical testing data, we assume that the failure rate is a constant and that
MTTF = 400 h. Answer the following questions.

(1) Estimate the expected number of components that will fail between 100
and 200 h.

(2) What is the conditional probability of failure of a component given that
this component hasn’t failed during the first 400 h?

(3) How many more components will fail if it is known that 30 components
have failed during the first 200 h?

Table 4.2 Statistical
information for the random
variables in Problem 4.2

Random variables X [lb] Y [lb] S [psi]

Distribution Normal Normal Normal

Mean 500 1000 400,000

Standard deviation 100 100 20,000
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Chapter 5
Reliability Analysis Techniques
(Time-Independent)

Reliability analysis under uncertainty, which assesses the probability that a sys-
tem’s performance (e.g., fatigue, corrosion, fracture) meets its marginal value while
taking into account various uncertainty sources (e.g., material properties, loads,
geometries), has been recognized as having significant importance in product
design and process development. However, reliability analysis in many engineering
problems has been a challenging task due to the overwhelmingly large computa-
tional burden. To resolve the computational challenges, a variety of numerical and
simulation techniques have been developed during the last two decades. This
chapter is devoted to providing an in-depth discussion of these developments with
the aim of providing insights into their relative merits and limitations.

5.1 Overview of Reliability Analysis Techniques

As discussed earlier, time-independent reliability can be formulated as a
multi-dimensional integration of the joint PDF fX(x) over a safe region

R ¼
Z

� � �
Z
XS

fX xð Þdx ð5:1Þ

where X = (X1, X2, …, XN)
T denotes an N-dimensional random vector that models

uncertainty sources, such as material properties, loads, and geometric tolerances;
fX(x) denotes the joint PDF of this random vector; the safe region ΩS is defined by
the limit-state function as ΩS = {X: G(X) � 0}; and G(X) is a system perfor-
mance (or response) function.

Neither analytical multi-dimensional integration nor direct numerical integration
is computationally feasible for large-scale engineering problems where the numbers
of random variables are relatively large (e.g., a finite element model with over 20
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parameters). The search for efficient computational procedures to estimate the
reliability has resulted in a variety of numerical and simulation methods. In general,
these methods can be categorized into four groups: (i) expansion methods; (ii) most
probable point (MPP)-based methods; (iii) sampling methods; and (iv) stochastic
response surface methods. In what follows, we will provide an overview of these
methods.

Expansion methods obtain the second-moment statistics of the performance
function based on the first- or second-order Taylor series expansion of this function
at the mean values of the input random variables [1]. Reliability can be computed
by assuming that the performance function follows a normal distribution. It can be
inferred, therefore, that expansion methods involve two approximations, specifi-
cally, (i) the first-order (linear) or second-order (quadratic) approximation of the
performance function at the mean values and (ii) the normal approximation to the
PDF of the performance function. These approximations lead to the fact that these
methods are only applicable for engineering problems with relatively small input
uncertainties and weak output nonlinearities.

Among the many reliability analysis methods, the first- or second-order relia-
bility methods (FORM [2] or SORM [3, 4]), which are MPP-based methods, are
most commonly used. FORM/SORM use the first- or second-order Taylor expan-
sion to approximate a limit-state function at the most probable failure point
(MPP) where the limit-state function separates failure and safe regions of a product
(or process) response. Some major challenges of FORM/SORM include (i) it is very
expensive to build the probability density function (PDF) of the response and
(ii) structural design can be expensive when employing a large number of
responses.

Sampling methods include direct or smart Monte Carlo simulation (MCS) [5–9].
Assuming that we know the statistical information (PDFs or PMFs) of the input
random variables, direct MCS generally involves the following three steps:

Step 1: Randomly generate a large number of samples based on the PDFs or
PMFs of the random inputs.

Step 2: Evaluate the performance function at each of the random samples.
Simulations or experiments need to be conducted to obtain the perfor-
mance function values. Upon the completion of this step, a large number
of random values (or realizations) of the performance function can be
obtained.

Step 3: Extract the probabilistic characteristics of the performance function,
including statistical moments, reliability, and PDF, from the random
realizations obtained in Step 2.

Although direct MCS [5] produces accurate results for reliability analysis and
allows for relative ease in implementation, it demands a prohibitively large number
of simulation runs. Thus, it is often used for the purpose of benchmarking in
reliability analysis. To alleviate the computational burden of direct MCS,
researchers have developed various smart MCS methods, such as (adaptive)
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importance sampling methods [6–8] and the enhanced MCS method with optimized
extrapolation [9]. Despite improved efficiency over direct MCS, these methods are
still computationally expensive.

The stochastic response surface method (SRSM) is an emerging technique for
reliability analysis under uncertainty. As opposed to the deterministic response
surface method (RSM), whose input variables are deterministic, SRSM employs
random variables as its inputs. The aim of SRSM is to alleviate the computational
burden required for accurate uncertainty quantification (i.e., quantifying the
uncertainty in the performance function) and reliability analysis. This is achieved
by constructing an explicit multi-dimensional response surface approximation
based on function values given at a set of sample points. Generally speaking,
uncertainty quantification and reliability analysis through SRSM consists of the
following steps:

Step 1: Determine an approximate functional form for the performance function.
Step 2: Evaluate the parameters of the functional approximation (or the stochastic

response surface) based on the function values at a set of sample points.
Step 3: Conduct MCS or numerical integration based on the functional approxi-

mation to obtain the probabilistic characteristics (e.g., statistical moments,
reliability, and PDF) of the performance function.

The current state-of-the-art SRSMs for uncertainty quantification include the
dimension reduction (DR) method [10–12], the stochastic spectral method [13–15],
and the stochastic collocation method [16–19].

5.2 Expansion Methods

Recall the simple performance function discussed in Chap. 4, where the safety
margin between the strength S of an engineered system and the load L on this
system is defined as the performance function. Under the assumption of normal
distributions for S and L, the performance function G also follows a normal dis-
tribution. By further assuming statistical independence between S and L, we can
compute the reliability based on the standard normal CDF of the following form

R ¼ U
lS � lLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2L þ r2S

p
 !

ð5:2Þ

The reliability of the engineered system is estimated based on the first two statistical
moments (mean and standard deviation). Here, we only consider a simple perfor-
mance function, which is a linear combination of two normally distributed random
variables. In fact, this idea of reliability analysis using the first two statistical
moments can be generalized to cases where the functions are in a nonlinear form.
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We begin with the first-order Taylor series expansion of the performance function
G(X) at the mean value, expressed as

G Xð Þ � G lXð Þþ
XN
i¼1

@G lXð Þ
@Xi

Xi � lXi

� �
¼ a1X1 þ � � � þ aNXN þ b

ð5:3Þ

This can be rewritten in a vector form as G(X) = aTX + b, where a = [a1, a2, …,
aN]

T contains the first-order partial derivatives of G with respect to input random
variables and is called a sensitivity vector of G. We can then obtain the first-order
approximate mean and variance of G as

lG ¼ E G½ � � E aTXþ b
� � ¼ aTlX þ b ð5:4Þ

and

r2G ¼ E G� lGð Þ2
h i

¼ E G� lGð Þ G� lGð ÞT
h i

� E aTXþ b� aTlX � b
� �

aTXþ b� aTlX � b
� �Th i

¼ aTE X� lXð Þ X� lXð ÞT
h i

a

¼ aTRXa

ð5:5Þ

where RX is the covariance matrix of X. Under the assumption of normality for the
performance function, the reliability can be computed based on the first two sta-
tistical moments as

R ¼ U � lG
rG

� �
ð5:6Þ

Note that the formula above gives the exact reliability only if the performance
function is a linear function of normally distributed random variables. However, it
is rare, in engineering practice, to encounter an engineered system whose perfor-
mance function is a simple linear combination of normally distributed random
variables. It is more likely that the performance function is of a nonlinear form and
that some of the random variables are non-normally distributed. In such cases, the
first-order expansion method leads to an inaccurate reliability estimate that often
contains a large error.

Example 5.1 A cantilever beam is shown in Fig. 5.1.
Assume that the vertical loads P1 and P2 follow normal distributions with

means 1000 and 500 lb, and standard deviations 100 and 50 lb, respectively.
In addition, assume that the bending moment is deterministic (fixed at
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10,000 lb-ft). Further assume that P1 and P2 are uncorrelated. Answer the
following questions.

(1) Compute the mean, standard deviation, and coefficient of variation
(COV) of the maximum moment at the fixed end using the first-order
expansion method.

(2) Compute the reliability with an allowable moment ma = 33,000 lb–ft.

Solution

(1) At the fixed end, the maximum moment can be expressed as

mmax ¼ 10P1 þ 20P2 þ 10000 ¼ aTXþ b

where a = [10, 20]T, b = 10,000, and X = [P1, P2]
T. Note that the mean

vector lX = [1000, 50]T, and the covariance matrix RX = [1002, 0; 0, 502],
where the semicolon denotes the separation between two adjacent rows in a
matrix. We first compute the mean as

lmmax
¼ aTlX þ b ¼ 10 20½ � 1000

500

	 

þ 10000

¼ 30; 000 lb�ft

We can then compute the variance as

r2mmax
¼ aTRXa ¼ 10 20½ � 1002 0

0 502

	 

10

20

	 

¼ 2� 106 lb�ft½ �2

Taking the square root of the variance gives us the standard deviation as

rmmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 106

p
� 1414:2 lb�ft

Next, we can compute the coefficient of variation (COV) of mmax as

10ft 10ft

P1 P2

m

Fig. 5.1 Cantilever beam subjected to vertical loads and a bending moment
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COV � rmmax

lmmax

¼ 1414:2
30000

� 0:047 or 4:7%

(2) Finally, the reliability can be computed as

R ¼ P mmax �mað Þ

¼ P
mmax � lmmax

rmmax

� ma � lmmax

rmmax

� �

¼ P Z� 33;000� 30;000
1414

¼ 2:12
� �

¼ U 2:12ð Þ ¼ 98:3%

Note that the performance function considered in this example is a simple
linear function of normally distributed random variables P1 and P2.
Therefore, the reliability estimate obtained from the first-order expansion
method is exact.

From what has been discussed, we can see that the linearization of a performance
function at the mean values of the random variables enables estimation of the mean
and variance of the performance function. However, the estimates may contain
large errors if second- and/or high-order expansion terms are significant. A more
accurate approximation can be realized by the second-order Taylor series expansion
of the performance function G(X). This expansion involves quadratic
(second-order) terms and can be expressed as

G Xð Þ � G lXð Þþ
XN
i¼1

@G lXð Þ
@Xi

Xi � lXi

� �
þ 1

2

XN
i¼1

XN
j¼1

@2G lXð Þ
@Xi@Xj

Xi � lXi

� �
Xj � lXj

� � ð5:7Þ

We can then obtain the second-order approximate mean and variance of G as

lG ¼ E G½ � � G lXð Þþ 1
2

XN
i¼1

@2G lXð Þ
@X2

i
r2Xi

ð5:8Þ

and
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r2Y ¼ E G� lGð Þ2
h i

�
XN
i¼1

@G lXð Þ
@Xi

� �2

r2Xi
þ 1

2

XN
i¼1

XN
j¼1

@2G lXð Þ
@Xi@Xj

r2Xi
r2Xj

ð5:9Þ

Under the assumption of normality for the performance function, the reliability can
then be computed using Eq. (5.6).

5.3 MPP-Based Methods

The expansion methods discussed earlier suffer from the following two drawbacks:
(i) these methods only utilize the first two statistical moments of the input random
variables while ignoring the distribution information of these variables; and (ii) the
mean point of the input random variables is treated as the reference point for
building a linear or quadratic approximation of the performance function, which
may lead to a large error in estimating a high reliability (or a low probability of
failure). As an attempt to overcome the drawbacks of the expansion methods,
Hasofer and Lind proposed the first-order reliability method (FORM) [2] in 1974.
Since then, the attempts to improve FORM have resulted in more advanced
MPP-based methods, including the second-order reliability method (SORM). We
will briefly review these two most-well-known MPP-based methods.

5.3.1 First-Order Reliability Method (FORM)

The basic idea of FORM is to linearize the performance function G(X) at the most
probable failure point on the limit-state surface G(X) = 0, or the MPP in the
transformed U-space. The U-space is composed of independent standard normal
variables U that are transformed from the input random variables X in the original
X-space. Compared to the expansion methods, the two distinctive features of
FORM are (i) the transformation T of input random variables to the standard
normal space and (ii) the use of the MPP as the reference point for the linearization
of the performance function. For a normal random variable Xi with mean lXi and
standard deviation rXi, transformation T can be simply defined as

Ui ¼ T Xið Þ ¼ X � lXi

rXi

; i ¼ 1; 2; . . .;N ð5:10Þ

In a general case, the transformation formula can be derived based on the CDF
mapping as
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FXi Xið Þ ¼ U Uið Þ ð5:11Þ

where FXi and U are the CDFs of Xi and Ui, respectively. Note that, unlike the
expansion methods, FORM utilizes the distribution information of input random
variables to transform these variables to standard normal random variables. The
transformation of a uniformly distributed random variable Xi to the corresponding
standard normal random variable Ui is illustrated in Fig. 5.2. Observe that the
one-to-one mapping between the CDFs ensures the one-to-one mapping between
the values of the original and transformed variables. The transformations of five of
the most commonly used types of probability distributions (i.e., normal, lognormal,
Weibull, Gumbel, and uniform) are presented in Table 5.1.

Through the transformation, the performance function G(X) in the original
X-space is mapped onto an equivalent function G(U) = G(T(X)) in the transformed
U-space. The transformation of a performance function involving two normally
distributed input variables is graphically presented in Fig. 5.3. In the U-space, the

Ui
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ui

0
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0
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0.4
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F X
 (x

i)
i

f U
(u

i)
i

0

1.0

0

f X
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i)
i

Xixi 1

CDF mapping

Fig. 5.2 Transformation of a uniform random variable to a standard normal random variable
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MPP u* denotes the point on the failure surface which has the minimum distance to
the origin. This distance is called the reliability index, expressed as

b ¼ u	k k ¼
XN
i¼1

u	i
� �2" #1=2

ð5:12Þ

The reliability R can then be computed as (when R 
 0.5)

R ¼ U bð Þ ð5:13Þ

As can be seen from Fig. 5.3, as the minimum distance b between the failure
surface and the origin becomes larger, the area of the safe region becomes larger,
while the area of the failure region becomes smaller. This indicates a lesser chance
that the random samples will be located in the failure region, which means a lower

Table 5.1 Probability distribution and its transformation between X- and U-space

Distribution Probability density function (PDF) Transformation

Normal fX xð Þ ¼ 1ffiffiffiffi
2p

p
r
exp � 1

2
x�l
r

� �2h i
X ¼ lþ rU

Lognormal
fX xð Þ ¼ 1ffiffiffiffiffiffi

2p
p

rx
exp � 1

2
ln x� l

r

� �2
" #

x[ 0

X ¼ exp lþ rUð Þ
r2X ¼ er

2 � 1
� �

exp 2lþ r2
� �

Weibull fX xð Þ ¼ kk kxð Þk�1e� kxð Þk

x
 0

X ¼ 1
k � ln U �Uð Þð Þ½ �1=k

Gumbel fX xð Þ ¼ a exp �a x� vð Þ � e�a x�vð Þ
h i

;

�1� x� þ1

X ¼ aþ b� 1ð ÞU Uð Þ

Uniform fX xð Þ ¼ 1
b�a ; a� x� b X ¼ aþ b� 1ð ÞU Uð Þ

X1

X 2

0

G(X) = 0
Failure surface

G(X) > 0
Failure region

G(X) 0
Safe region

fX(x)

Mean point

U1

U
2

G(X) = 0
Failure surface

G(X) > 0
Failure region

fU(u)

G(X) 0
Safe region

0

Reliability 
index β

FORM

MPP  u*

Error 
region

Fig. 5.3 Transformation from X-space to U-space and FORM approximation
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probability of failure and thus higher reliability. Thus, the reliability index b is a
good measure of reliability. Note that this measure gives an exact reliability value
only if the failure surface in the U-space is of a linear form. In most engineering
problems, however, the failure surface in the U-space is a nonlinear function, either
due to nonlinearity in the performance function or due to nonlinear transformation
from a non-normal distribution to a normal distribution. For the case in Fig. 5.3, the
failure surface exhibits a nonlinear form in the U-space due to the nonlinearity in
the performance function, and as a consequence, the FORM overestimates the
reliability, as indicated by the shaded error region.

The remaining—however, the most critical—task is to search for the
MPP. Mathematically, this task can be formulated as an optimization problem with
one equality constraint in the U-space, expressed as

Minimize Uk k
Subject to GðUÞ ¼ 0

ð5:14Þ

where the optimum point on the failure surface is the MPP u*. The MPP search
generally requires an iterative optimization scheme based on the gradient infor-
mation of the performance function. Among the many MPP search algorithms, the
most widely used is the Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method, due
to its simplicity and efficiency. The HL-RF method consists of the following iter-
ative steps:

Step 1: Set the number of iterations k = 0 and the initial MPP estimate u = u(0)

that corresponds to the mean values of X.
Step 2: Transform u(k) to x(k) using Eq. (5.11). Compute the performance function

G(u(k)) = G(x(k)) and its partial derivatives with respect to the input ran-
dom variables in the U-space as

rUG u kð Þ
� �

¼ @G
@U1

;
@G
@U2

; . . .;
@G
@UN

	 

U¼u kð Þ

ð5:15Þ

Step 3: Update the search point at the current iteration as

u kþ 1ð Þ ¼ u kð Þ � n kð Þ � G u kð Þ� �
rUG u kð Þð Þk k

 !
n kð Þ

¼ u kð Þ � rUG u kð Þ
� �

� G u kð Þ
� �h i rUG u kð Þ� �

rUG u kð Þð Þk k2
ð5:16Þ

where n(k) is the normalized steepest ascent direction of G(U) at u(k),
expressed as
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n kð Þ ¼ rUG u kð Þ� �
rUG u kð Þð Þk k ð5:17Þ

Step 4: Repeat Steps 2 and 3 until the convergence of u.

The updating process in the HL-RF method is graphically shown in Fig. 5.4. The
process starts with the initial MPP estimate u(0) where a linear approximation is
constructed based on the vector of partial derivative from Step 2. A perpendicular to
the linear approximation line is then constructed through the origin. The updated
point u(1) is identified as the point on the perpendicular whose distance from the
origin equals ½uð0Þ � n 0ð Þ�G uð0Þ

� �
=jjrUGðu 0ð ÞÞjj�, i.e., the magnitude of the unit

vector n(0), as shown in Eq. (5.16). This completes the first iteration. In each of the
following iterations, the method constructs a linear approximation to the contour of
the performance function at the most recent point, and then locates the updated
point on the perpendicular of the linear approximation based on Eq. (5.16). This
process continues until the convergence of the search.

Observe that the MPP search algorithm requires computation of the first-order
derivatives of G(U). The derivatives can be evaluated using the finite difference
method, which uses the difference between the original and perturbed values of G
(U) to compute the first-order sensitivities. Since we need to compute both the
original and the perturbed responses, any iteration during the MPP search requires
N + 1 function evaluations. If we have k iterations, the total number of function
evaluations will be k(N + 1). This suggests that the FORM is first-order efficient.

U1

U2

G(U) = 0
Failure surface

G(U) > 0
Failure region

G(U) ≤ 0
Safe region

0

u(0)

u(1)

G(U) = G(u(0)) > 0 

n(0)

Fig. 5.4 Procedure for the HL-RF method in search of MPP
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Example 5.2 Consider the following performance function

G X1;X2ð Þ ¼ 1� 80
X2
1 þ 8X2 þ 5

where X1 and X2 each follow a normal distribution with the mean 4 and the
standard deviation 0.6. Find the MPP and compute the reliability with the
FORM.

Solution
The first iteration in the HL-RF method is detailed as follows:

Step 1: Set the number of iterations k = 0 and the initial values u = (0,0).
Step 2: Transform u(0) to x(0) with Eq. (5.11). x(0) = (4,4). Compute the

performance function G(x(k)) as

G X1;X2ð Þ ¼ 1� 80
X2
1 þ 8X2 þ 5

¼ 1� 80
42 þ 8� 4þ 5

� �0:5049

and the partial derivatives as

@G
@U1

¼ @G
@X1

@X1
@U1

¼ 160X1rX1
X2
1 þ 8X2 þ 5ð Þ2 ¼

160� 4� 0:6
42 þ 8� 4þ 5ð Þ2 � 0:1367

@G
@U2

¼ @G
@X2

@X2
@U2

¼ 640rX2
X2
1 þ 8X2 þ 5ð Þ2 ¼

640� 0:6
42 þ 8� 4þ 5ð Þ2 � 0:1367

:

Step 3: Update the search point at the current iteration as

u 1ð Þ ¼ u 0ð Þ � rUG u 0ð Þ
� �

� G u 0ð Þ
� �h i rUG u 0ð Þ� �

rUG u 0ð Þð Þk k2

¼ 0; 0ð Þ � 0:1367; 0:1367ð Þ � �0:5094ð Þ½ � 0:1367; 0:1367ð Þ
0:13672 þ 0:13672

¼ 1:8633; 1:8633ð Þ:

Table 5.2 Iteration history for MPP search in Example 5.2

Iteration U1 U2 b G Uð Þ @G
@U1

@G
@U2

0 0.0000 0.0000 0.0000 −0.5094 0.1367 0.1367

1 1.8633 1.8633 2.6351 −0.1090 0.0944 0.0738

2 2.7774 2.1707 3.5251 −0.0059 0.0860 0.0607

3 2.9225 2.0630 3.5772 0.0001 0.0863 0.0600

4 2.9366 2.0416 3.5766 0.0000 0.0864 0.0600

Optimum 2.9366 2.0416 3.5766 0.0000 0.0864 0.0600
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The results for all the iterations needed to find the MPP are summarized in
Table 5.2. Finally, the reliability is estimated as the standard normal CDF
value of b, which is 0.9998.

5.3.2 Second-Order Reliability Method (SORM)

As can be seen in Fig. 5.3, FORM constructs a first-order or linear approximation to
the limit-state function at the MPP. If G(U) is nonlinear, FORM either over- or
under-estimates the reliability since it ignores the curvature of the nonlinear limit
state. The resulting error (the shaded area in Fig. 5.3) can be large if G(U) is highly
nonlinear (i.e., when the failure surface exhibits a large curvature). In such cases,
SORM, which takes into account the curvature information in the limit-state
function approximation, is more desirable. The comparison between FORM and
SORM is graphically shown in Fig. 5.5. A nonlinear approximation to the failure
surface through use of SORM results in greater accuracy in the reliability estimate.
This accuracy improvement is achieved by utilizing more information and,
specifically, the second-order derivatives with respect to the input random variables.

U1

U
2

G(X) = 0
Failure surface

G(X) > 0
Failure region

fU(u)

G(X) ≤ 0
Safe region

0

Reliability 
index β

SORM

FORM

MPP  u*

Fig. 5.5 FORM and SORM
approximations
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Breitung’s SORM approximation of the probability of failure can be expressed
in an explicit form as [3]

pf ¼ U �bð Þ
YN�1

i¼1

1þ bjið Þ ð5:18Þ

where ji, i = 1, 2, …, N, are the principal curvatures of G(U) at the MPP, and b is
the reliability index. Clearly, upon completion of the FORM computation, an extra
computational task is needed to find the principal curvatures ji. This task can be
completed in two steps, which are listed as follows:

Step 1: Rotate the standard normal variables Ui (in the U-space) to a set of new
standard normal variables Yi (in the Y-space), of which the last variable YN
shares the same direction with the unit gradient vector of G(U) at the
MPP. To do so, we generate an orthogonal rotation matrix R, which can be
derived from a simple matrix R0, expressed as

R0 ¼
1 0 � � � 0
0 1 � � � 0
..
. ..

. . .
. ..

.

@G u	ð Þ=@u1
rG u	ð Þj j

@G u	ð Þ=@u2
rG u	ð Þj j � � � @G u	ð Þ=@uN

rG u	ð Þj j

2
6664

3
7775 ð5:19Þ

where the last row consists of the components of the unit gradient vector of the
limit-state function at the MPP. Next, the orthogonal matrix R can be obtained by
orthogonalizing R0 using the Gram-Schmidt algorithm. In the rotated Y-space, the
U-space, second-order approximation to the limit-state function at the MPP can be
expressed as

G Yð Þ � �YN þ bþ 1
2

Y� Y	ð ÞTRDRT Y� Y	ð Þ ð5:20Þ

where D is the second-order Hessian matrix of the size N by N; and Y* = [0, 0, …,
b]T is the MPP in the Y-space.

Step 2: Compute the principal curvatures ji as the N − 1 eigenvalues of an
(N − 1) � (N − 1) matrix A of the following form

A ¼ RDRT

rG u	ð Þj j ð5:21Þ

The second-order approximation can then be rewritten as
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G Uð Þ ¼ �UN þ bþ 1
2

XN�1

i¼1

jiU
2
i ð5:22Þ

Finally, Breitung’s SORM formula in Eq. (5.18) can be used to compute the
probability of failure or reliability. Besides Breitung’s formula, another popular and
more accurate SORM formulation is given by Tvedt [4].

5.4 Sampling Methods

During the last several decades, sampling methods have played an important role in
advancing research in reliability analysis. These methods generally involve gen-
eration of random samples of input random variables, deterministic evaluations of
the performance function at these random samples, and post-processing to extract
the probabilistic characteristics (e.g., statistical moments, reliability, and PDF) of
the performance function. In this section, direct Monte Carlo simulation (MCS), the
most crude (yet widely used) sampling method, is briefly introduced. Following this
brief introduction, we introduce a smart MCS method that borrows ideas from
MPP-based methods, namely the importance sampling method.

5.4.1 Direct Monte Carlo Simulation

The term “Monte Carlo” was originally used as a Los Alamos code word by Ulam
and von Neumann, who worked on stochastic simulations to achieve better atomic
bombs. Since then, the word has been widely used in articles and monographs and
MCS has been applied to a wide variety of scientific disciplines. The basic idea
behind MCS is to approximate an underlying distribution of a stochastic function
and the associated probabilistic characteristics (e.g., mean, variance, and
higher-order moments) by computing the function values at simulated random
samples.

To introduce this concept, let us rewrite the multi-dimensional integration in
Eq. (4.9) for reliability analysis with an indicator function as

R ¼
Z

� � �
Z
XS

fX xð Þdx¼
Z

� � �
Z
X

IXS xð ÞfX xð Þdx ¼ E IXS xð Þ� � ð5:23Þ

where I[�] is an indicator function of the safe or fail state such that
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IXS xð Þ ¼ 1; x 2 XS

0; x 2 XnXS


ð5:24Þ

Observe that the reliability can be computed as the expectation of an indicator
function over the entire domain of X. According to the law of large numbers, we
can obtain a good approximation of this expectation by employing a sufficiently
large number of random samples. Specifically, the direct MCS consists of four
sequentially executed steps (assuming statistical independence between random
variables):

Step 1: Specify the number of random samples M. For each random variable Xi,
generate M “pseudo random numbers” vi1, vi2, …, viM from a standard
uniform distribution (between 0 and 1). Then obtain M random vectors v1,
v2, …, vM with vj = [v1j, v2j, …, vNj]

T.
Step 2: Transform vij (i = 1, 2, …, N, j = 1, 2, …, M) to xij using the CDF

mapping method shown in Eq. (5.11) and illustrated in Fig. 5.2. The
mathematical expression of this transformation can be written as

xij ¼ F�1
Xi

vij
� � ð5:25Þ

For example, if an input random variable X follows a uniform distribution
between a and b, its CDF can be written as FX(x) = (x − a)/(b − a) for a � x � b,
which in turn gives us the transformation as x = a + (b − a)v. If we have two
standard normal random variables X1 and X2, the transformation for either can be
expressed as xi = U−1(vi). The scatter plots of 1000 randomly generated samples for
two standard uniform variables and the transformed random samples for the cor-
responding standard normal variables are shown in Fig. 5.6.
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Fig. 5.6 Standard uniform samples (a) and the corresponding standard normal samples (b)
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Step 3: Evaluate the values of the performance function G(X) at the random
samples xj. This step requires M function evaluations. Upon the comple-
tion of this step, we obtain M random function values G(xj), for j = 1, 2,
…, M, which consist of rich statistical information of the performance
function.

Step 4: Extract the probabilistic characteristics of G(X), including statistical
moments, reliability, and PDF, from the random function values. For
example, the reliability can be estimated by

R ¼ E IXS xð Þ� � � 1
M

XM
j¼1

IXS xj
� � ð5:26Þ

In addition, any rth-order moment of G(X) can be calculated as

cr ¼
Z

� � �
Z
X

Gr xð Þ fX xð Þ dx ¼ E Gr xð Þð Þ � 1
M

XM
j¼1

Gr xj
� � ð5:27Þ

Random sampling allows for the derivation of all probabilistic characteristics (e.g.,
statistical moments, reliability, and PDF) of the performance function. This is
different from MPP-based methods, which are only capable of estimating the
reliability.

Reliability analysis using direct MCS is graphically illustrated in Fig. 5.7. A set
of random samples of X1 and X2 are categorized into two groups, failed samples and
safe samples, separated by the failure surface (or the limit state function) G(X) = 0.
The reliability is computed as the proportion of the safe samples over all random
samples.
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fX(x)
Mean point

Failed sample
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Fig. 5.7 Concept of
reliability analysis using
direct MCS
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So far, it looks straightforward to obtain a reliability estimate using direct MCS.
However, this estimate does raise a concern from the precision perspective.
Intuitively, we would conjecture that precision depends on the number of samples
M and, for a small M, the reliability estimate might be subject to large variance or
low precision. We would further conjecture that, according to the law of large
numbers, the reliability estimate would approach the true value as M approaches
infinity. Indeed, all of these conjectures are correct; thus, we need to have a
mathematical model to rigorously express the important quantity underlying our
conjectures. This important quantity is the variance of the reliability estimate,
expressed as [20]

rP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 1� Pð Þ

M

r
ð5:28Þ

where P is the probability estimate (reliability or probability of failure) derived from
direct MCS, and M is the number of MCS samples. To clearly reflect the variation
in the probability estimate, we can compute the error bounds with a 95% confidence
level. The error bound with a 100(1 − a)% confidence can be computed as [20]

eS ¼ z1�a=2rP ¼ z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 1� Pð Þ

NS

s
ð5:29Þ

where z1−a/2 is the 100(1 − a/2)th percentile of the standard normal distribution. For
a 95% confidence level, a = 0.05 and z1−a/2 = 1.96.

Example 5.3 Recall Exercise 4.2 where a cantilever beam is subjected to two
end transverse loads X and Y in orthogonal directions. Ten sets of random
samples generated for direct MCS are summarized in Table 5.3. Obtain the
reliability estimate using direct MCS and discuss the precision of the
estimate.

Table 5.3 Summary of random samples for direct MCS in Example 5.3

Sample
ID

X [lb] Y [lb] R [psi] Sample
ID

X [lb] Y [lb] R [psi]

1 614 853 448,480 6 566 850 407,240

2 674 1036 385,540 7 512 944 402,470

3 528 1158 359,820 8 415 1067 391,870

4 483 887 415,130 9 458 903 409,390

5 553 1057 383,340 10 484 1124 400,800
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Solution
First, evaluate the values of the performance function at all ten sample points
as −100,645, 26,390, 66,645, −76,745, 16,635, −67,505, −42,500, −9655,
−69,700 and 8805. The number of safe samples is 6 and the reliability
estimate from direct MCS is R = 6/10 = 0.60. Since direct MCS only
employs a small number of samples (M = 10), the estimate may have a large
variation, which is computed as

rP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 1� Rð Þ

M

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6 � 0:4

10

r
� 0:155

This indicates that the MC estimate contains a large variation that can be fully
attributed to the small sample size. We can then compute the 95% confidence
interval of the reliability estimate as [0.2962, 0.9038].

5.4.2 Importance Sampling Method

As can be observed from Eq. (5.28), direct MCS generally requires a large number
M of samples to obtain a sufficiently small variance in the reliability estimate,
especially in cases of high reliability (or low probability of failure). To alleviate this
computational burden and reduce the variance in the reliability estimate, researchers
have developed a wide variety of smart MCS methods, among which the most
popular one is the importance sampling method [6–8]. The basic idea of importance
sampling is to assign more sample points to the regions that have more impact on
the probability of failure. If these regions are treated with greater importance by
sampling more frequently, the variance in the resulting reliability or probability
estimate can be reduced. Therefore, one of the most important elements in
importance sampling is to choose an appropriate sampling distribution that
encourages random samples to be placed in these regions. An example of such a
sampling distribution is shown in the U-space in Fig. 5.8, where the sampling
distribution centers at the MPP in the standard normal space. For a given number of
random samples, more points are assigned to the failure region by the importance
sampling method than by direct MCS; because direct MCS sampling distribution
uses the means of random inputs (or the origin in the U-space) as the center.

To examine this, start with the formula for the probability of failure, expressed as

pf ¼
Z

� � �
Z
X

IXF xð Þ fX xð Þdx � 1
M

XM
j¼1

IXF xj
� � ð5:30Þ
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where the failure domain ΩF is defined by the limit-state function
XF ¼ X:G Xð Þ[ 0f g. If we define a new sampling distribution hX(x), such as the
one in Fig. 5.8, we can rewrite the probability of failure as

pf ¼
Z

� � �
Z
X

IXF xð Þ fX xð Þ
hX xð Þ

	 

hX xð Þdxpf � 1

M

XM
j¼1

IXF xj
� � fX xj

� �
hX xj
� � ð5:31Þ

It can be expected that, in the new sampling distribution, a random sample point
will have a greater chance of the indicator value being one or, in other words, a
greater chance of falling in the failure region. Therefore, we can expect a larger
number of failure samples, which leads to a smaller variance in the estimate of the
probability of failure.

5.5 Stochastic Response Surface Methods

Stochastic response surface methods (SRSMs) are capable of alleviating the com-
putational burden required by sampling methods, while still maintaining compa-
rable accuracy. This section introduces three state-of-the art SRSMs for uncertainty
quantification and reliability analysis, namely the dimension reduction
(DR) method [10–12], the stochastic spectral method [13–15], and the stochastic
collocation method [16–19].

U1

U
2

G(X) = 0
Failure surface

G(X) > 0
Failure region

fU(u)

G(X) ≤ 0
Safe region

MPP  u*

0

Importance 
sampling

Direct MCS

Fig. 5.8 Comparison
between direct MCS and
importance sampling
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5.5.1 Dimension Reduction (DR) Method

The search for efficient computational procedures to deal with high-dimensional
problems has led to the development of the dimension reduction (DR) method [10,
11, 21, 22]. Outside of the engineering design field, the DR method is widely
known as the high-dimensional model representation (HDMR) method, which was
originally developed for efficient multivariate model representation in chemical
system modeling [21, 23–26]. This method approximates a multi-dimensional
response function with a set of component functions with increasing numbers of
random variables from a constant to multidimensional functions. For a system
response with negligible high-order variate interaction, the HDMR method enables
an efficient, yet accurate, formulation of this response function with low-order
component functions (usually second-order or bivariate are sufficient). In fact, the
responses of most practical physical systems are significantly affected by only
low-order interactions of the input random variables. Depending on the way in
which the component functions are determined, HDMR methods can be categorized
into two types: ANOVA-HDMR and Cut-HDMR [21]. ANOVA-HDMR exactly
follows the analysis of variance (ANOVA) procedure, and is useful for measuring
the contributions of the variance of each component function to the output variance
[27]. However, the multi-dimensional integrations involved in ANOVA-HDMR
make this expansion computationally unattractive. On the other hand, Cut-HDMR
expansion exactly represents the response function in the hyperplane that passes
through a reference point in the input random space. This expansion does not
require multi-dimensional integrations and is computationally much more efficient
than ANOVA-HDMR. It is fair to say that the DR method is essentially Cut-HDMR
designated for the purpose of reliability analysis. Specialized versions of this
method include the univariate dimension reduction (UDR) method that simplifies
one multi-dimensional response function to multiple one-dimensional component
functions [10, 21] and the bivariate dimension reduction (BDR) method that sim-
plifies one multi-dimensional response function to multiple one- and
two-dimensional integrations [11, 22].

Fundamentals of Dimension Reduction (DR)

In the classical ANOVA decomposition, an N-dimensional, real-valued smooth
stochastic response can be decomposed in a hierarchical and convergent manner as
[11, 23]

G xð Þ ¼ G0 þ
XN
i¼1

Gi Xið Þþ
X

1� i1\i2 �N

Gi1i2 Xi1 ;Xi2ð Þ

þ � � � þ
X

1� i1\���\is �N

Gi1���iS Xi1 ; . . .;Xisð Þþ � � � þG1���N X1; . . .;XNð Þ

ð5:32Þ
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Here, G0 is a constant acting as the zeroth-order component function that represents
the mean effect; Gi(Xi) is a univariate function acting as the first-order component
function that expresses the individual effect of xi on the response G(X),
Gi1i2 Xi1 ;Xi2ð Þ is a bivariate function acting as the second-order component function
that describes the interactive effects of Xi1 and Xi2 on the response; the higher order
terms give the interactive effects of increasing numbers of input random variables
acting together to contribute to the response; and the last term accounts for any
residual dependence of all of the input random variables cooperatively locked
together to affect the response. Once we suitably determine all of the important
component functions, the resulting decomposed model can be used as a stochastic
response surface model to efficiently compute the response.

If we define a set of dimensional indices u�D where D ¼ 1; . . .;Nf g denotes a
set of all dimensional indices, we can obtain a more compact notation of the
generalized dimension decomposition, expressed as [28]

G Xð Þ ¼
X
u2D

Gu Xuð Þ ð5:33Þ

Here, Gu denotes a |u|-dimensional component function whose random dimensions
correspond to the dimensional indices belonging to u, where |u| is the number of
indices in the set u. For example, if we have u = {1, 2, 4}, then
Gu ¼ G124 X1;X2;X4ð Þ.

The component functions can be obtained by defining an appropriate product
measure and an error functional and then minimizing this error functional [21, 23].
An efficient way is to choose the measure as the Dirac measure at a reference point
lX, leading to the Cut-HDMR decomposition as [21, 28]

G Xð Þ ¼ GC
0 þ

XN
i¼1

GC
i Xið Þþ

X
1� i1\i2 �N

GC
i1i2 Xi1 ;Xi2ð Þ

þ � � � þ
X

1� i1\���\is �N

GC
i1���iS Xi1 ; . . .;Xisð Þþ � � � þGC

1���N X1; . . .;XNð Þ

ð5:34Þ

or in a more compact manner as

G Xð Þ ¼
X
u2D

GC
u Xuð Þ ð5:35Þ

where the component functions are explicitly given as
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GC
0 ¼ G lXð Þ;

GC
i ¼ G Xð ÞjX¼lXnXi

�GC
0 ;

GC
i1i2 ¼ G Xð ÞjX¼lXn Xi1 ;Xi2ð Þ�GC

i1 � GC
i2 � GC

0 ;

. . .

ð5:36Þ

Here, the notation x = lX\Xi denotes the vector X with its components other than Xi

being set equal to the corresponding components of the reference vector l.
A general recursive formula for the component functions can be derived as [21]

GC
u Xuð Þ ¼ G Xð ÞjX¼lXnXu

�
X
v�u

GC
v Xvð Þ ð5:37Þ

and can also be more conveniently expressed as [29]

GC
u Xuð Þ ¼

X
v�u

�1ð Þ uj j� vj jG Xð ÞjX¼lXnXv
ð5:38Þ

where the notation X = lX\Xu denotes the vector X with its components other than
those indices that belong to the set u being set equal to the corresponding com-
ponents of the reference vector l.

It is worth noting that we can derive the Cut-HDMR formulae from a Taylor
series expansion of the response function at the reference point lx as [11]

G Xð Þ ¼ G lXð Þþ
X1
j¼1

1
j!

XN
i¼1

@ jG

@X j
i

lXð Þ Xi � lXi

� � j
þ
X1

j1;j2 
 1

1
j1!j2!

X
1� i1\i2 �N

@j1 þ j2G

@Xj1
i1 @X

j2
i2

lXð Þ Xi1 � lXi1

� �j1
Xi2 � lXi2

� �j2 þ � � �

ð5:39Þ

We can see that any component function in the Cut-HDMR expansion accounts for
an infinite number of Taylor series terms containing the same set of random vari-
ables as that component function. For example, the univariate decomposed com-
ponent function Gi

C(Xi) in Eq. (5.34) contains the univariate terms with Xi of any
order in the Taylor series expansion, and so on. Thus, the dimension decomposition
of any order in Eq. (5.34) should not be viewed as a Taylor series expansion of the
same order, nor do they represent a limited degree of nonlinearity in g(x). In fact,
the dimension decomposition provides greater accuracy than a Taylor series
expansion of the same or even higher order. In particular, the residual error in a
univariate approximation to a multidimensional integration of a system response
over a symmetric domain was reported to be far less than that of a second-order
Taylor expansion method for probability analysis [11]. We also note that, to con-
struct the dimension decomposition of a response function, or the Cut-HDMR, we
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need to first define a reference point lX ¼ ðlX1
; lX2

; . . .; lXN
Þ in the input random

space. Regarding this issue, the work by Sobol [27] suggests that it is optimum to
define the reference point as the mean value of the input random variables. Thus,
this study will employ the mean point of the random inputs as the reference point.

The responses of most practical physical systems are significantly affected by
only low-order interactions (usually up to the second-order) of the input random
variables; the high-order interactions of these variables are often very weak. In these
systems, a few lower-order component functions are sufficient to capture the
response uncertainty. These considerations led to two well-known versions of
Cut-HDMR, namely the univariate dimension reduction (UDR) method [10] and
the bivariate dimension reduction (BDR) method [11]. Considering the component
functions in Eq. (5.34), looking only up to the first-order yields the univariate
decomposed response, expressed as

GU Xð Þ ¼ GC
0 þ

XN
i¼1

GC
i Xið Þ ð5:40Þ

Replacing the component functions with the formulae in Eq. (5.36) gives us the
UDR formulation, expressed as

GU Xð Þ ¼
XN
i¼1

G Xð Þjx¼lXnXi
� N � 1ð ÞG lXð Þ ð5:41Þ

For example, if a response function G(X) has three input random variables X1, X2,
and X3, the univariate decomposed response can be expressed as

GU X1;X2;X3ð Þ ¼ G X1; lX2
; lX3

� �þG lX1
;X2; lX3

� �
þG lX1

; lX2
;X3

� �� 2G lX1
; lX2

; lX3

� � ð5:42Þ

Limiting the Cut-HDMR at the second-order gives us the bivariate decomposed
response, expressed as

GB Xð Þ ¼ GC
0 þ

XN
i¼1

GC
i Xið ÞG Xð Þþ

X
1� i1\i2 �N

GC
i1i2 Xi1 ;Xi2ð Þ ð5:43Þ

Substituting the component functions with the formulae in Eq. (5.36) gives us the
BDR formulation, expressed as

GB Xð Þ ¼
X

1� i1\i2 �N

G Xð Þjx¼lXn Xi1 ;Xi2ð Þ

� N � 2ð Þ
XN
i¼1

G Xð Þjx¼lXnXi
þ ðN � 1ÞðN � 2Þ

2
G lXð Þ ð5:44Þ
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For the same response function G(X) with three input random variables X1, X2, and
X3, the bivariate decomposed response can be expressed as

GU X1;X2;X3ð Þ ¼ G X1;X2; lX3

� �þG X1; lX2
;X3

� �þG lX1
;X2;X3

� �
� G X1; lX2

; lX3

� �� G lX1
;X2; lX3

� �� G lX1
; lX2

;X3
� �

þG lX1
; lX2

; lX3

� � ð5:45Þ

To further predict the reliability or PDF of the response, the decomposed compo-
nent functions need to be integrated or interpolated, followed by the use of a PDF
generation technique (in the case of integration [11]) or the use of direct MCS (in
the case of interpolation [22]). In what follows, the procedure for numerical
interpolation is discussed in detail.

Numerical Interpolation for Component Function Approximation

Consider the UDR formula in Eq. (5.41) where the univariate component function
can be approximated with function values at a set of univariate sample points,
expressed as

G Xð Þjx¼lXnXi
¼ G lX1

; . . .;lXi�1
;Xi; lXiþ 1

; . . .; lXN

� �
¼
Xm
j¼1

aj Xið Þ � G lX1
; . . .; lXi�1

; x jð Þ
i ; lXiþ 1

; . . .; lXN

� � ð5:46Þ

where m is the number of univariate sample points (Xi = xi
(1), xi

(2), …, xi
(m)), and

aj(Xi) is the jth interpolation basis function. A widely used interpolation basis
function is called the Lagrange polynomial. In Lagrange interpolation, aj

i has the
following form

aj Xið Þ ¼
Qm

k¼1;k 6¼j Xi � x kð Þ
i

� �
Qm

k¼1;k 6¼j x jð Þ
i � x kð Þ

i

� � ð5:47Þ

Repeating this interpolation for all univariate component functions in Eq. (5.36),
we then have an explicit function approximation for the response function,
expressed as

GU Xð Þ ¼
XN
i¼1

Xm
j¼1

aj Xið Þ � G lX1
; . . .; lXi�1

; x jð Þ
i ; lXiþ 1

; . . .; lXN

� �
� N � 1ð ÞG lXð Þ

ð5:48Þ

If we use the same number of sample points m for the Lagrange interpolation of all
univariate component functions, we then need (m − 1)N + 1 function evaluations
for the UDR. An empirical sample point distribution for the UDR when m = 3 is
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shown in Fig. 5.9. Also shown is the full factorial (or tensor-product) design (the
number of sample points being mN) without the use of UDR. It is apparent that,
compared to the full factorial design, UDR achieves a significant reduction in the
number of sample points.In the case of the BDR, the Lagrange interpolation of the
bivariate component function can be expressed as

G Xð Þjx¼lXn Xi1 ;Xi2ð Þ ¼ G lX1
; . . .;lXi1�1

;Xi1 ; lXi1 þ 1
; . . .; lXi2�1

;Xi2 ; lXi2 þ 1
; . . .; lXN

� �
¼
Xm
j2¼1

Xm
j2¼1

aj1 Xi1ð Þaj2 Xi2ð Þ�

G lX1
; . . .; lXi1�1

; x j1ð Þ
i1 ; lXi1 þ 1

; . . .; lXi2�1
; x j2ð Þ

i1 ; lXi2 þ 1
; . . .; lXN

� �
ð5:49Þ

Repeating this interpolation for all bivariate component functions in Eq. (5.44)
gives us an explicit formula for the bivariate approximation of the response func-
tion, expressed as

( )1 1 2
3 ,X X Xμ σ μ+( )1 2

,X Xμ μ

( )1 1 2 2
3 , 3X X X Xμ σ μ σ+ −

( )1 1 2 2
3 , 3X X X Xμ σ μ σ+ +( )1 2 2

, 3X X Xμ μ σ+

( )1 2 2
, 3X X Xμ μ σ−( )1 1 2 2

3 , 3X X X Xμ σ μ σ− −

( )1 1 2
3 ,X X Xμ σ μ−

( )1 1 2 2
3 , 3X X X Xμ σ μ σ− +

Full factorial

UDR

Fig. 5.9 Empirical sample point distribution for UDR (m = 3)
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GB Xð Þ ¼
X

1� i1\i2 �N

Xm
j2¼1

Xm
j2¼1

aj1 Xi1ð Þaj2 Xi2ð Þ�

G lX1
; . . .; lXi1�1

; x j1ð Þ
i1 ; lXi1 þ 1

; . . .; lXi2�1
; x j2ð Þ

i1 ; lXi2 þ 1
; . . .; lXN

� �
� N � 2ð Þ

XN
i¼1

Xm
j¼1

aj Xið Þ � G lX1
; . . .; lXi�1

; x jð Þ
i ; lXiþ 1

; . . .;lXN

� �

þ ðN � 1ÞðN � 2Þ
2

G lXð Þ

ð5:50Þ

Since we have N(N − 1)/2 bivariate combinations and we need (m − 1)2 sample
points for each bivariate combination (excluding the m − 1 univariate sample
points), the number of sample points for computing the bivariate component
functions is N(N − 1)(m − 1)2/2. Therefore, the total number of sample points
required by the BDR is N(N − 1)(m − 1)2/2 + (m − 1)N + 1. Similarly, we can
apply Lagrange interpolation to other versions of the DR method involving third-
and higher-order component functions.

Monte Carlo Simulation for Uncertainty Quantification

Once Lagrange interpolation is completed for all component functions in the UDR
or BDR, an approximate function Ĝ of the original response function G can be
obtained by interpolation using Lagrange polynomials at a set of sample points.
Thus, any probabilistic characteristics of G(x), including statistical moments, reli-
ability, and PDF, can be easily estimated by performing direct MCS. For example,
any rth moment can be calculated as

br ffi
Z

Ĝr xð ÞfX xð Þdx

¼ E Ĝr xð Þ� � ¼ lim
M!1

1
M

XM
j¼1

Ĝr xj
� � ð5:51Þ

where br is the rth moment of the performance function G(X); fX(x) is the joint
PDF; xj is the jth realization of X; and M is the sample size. For reliability esti-
mation, we can define an approximate safe domain for the performance function
g as

X̂S ¼ x : Ĝ xð Þ� 0
� � ð5:52Þ

Therefore, the reliability R can also be estimated by performing MCS as
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R ffi
Z

IX̂S xð ÞfX xð Þdx

¼ E IX̂S xð Þ� � ¼ lim
ns!1

1
M

XM
j¼1

IX̂S xj
� � ð5:53Þ

where I[�] is an indicator function of a “safe” or “fail” state such that

IX̂S xj
� � ¼ 1; xj 2 X̂S

0; xj 2 XnX̂S


ð5:54Þ

It should be noted that the MCS performed here employs the explicit interpolation
Ĝ instead of the original performance function G and is thus inexpensive. It is also
noted that the approximation of the response function over the input domain allows
for the derivation of any probabilistic characteristics (e.g., statistical moments,
reliability, and PDF) based on the same set of sample points. This is desirable,
especially in reliability-based robust design problems where both moment estima-
tion and reliability analysis are required [30–32].

MATLAB Code for UDR-based SRSM

A 99-line MATLAB code that implements a UDR-based SRSM is provided in the
Appendix. The method in the code first uses the UDR to decompose the multidi-
mensional performance function into multiple one-dimensional univariate functions
and then employs cubic spine interpolation to approximate the one-dimensional
univariate functions. The two-step process results in a stochastic response surface,
with which the MCS is then applied to obtain the full probabilistic characteristics
(e.g., statistical moments, reliability, and PDF) of the performance function.

5.5.2 Stochastic Spectral Method

The stochastic spectral method [13] is an emerging technique for reliability analysis
of complex engineering problems. This method uses a number of response samples
and generates a stochastic response surface approximation with multi-dimensional
polynomials over a random space. Once the explicit response surface is constructed,
MCS is often used for reliability analysis due to its convenience. The most popular
stochastic spectral method is the polynomial chaos expansion (PCE) method. The
fundamentals and computational procedures of PCE are detailed next.

Fundamentals of PCE

The original Hermite polynomial chaos, also called the homogeneous chaos, was
derived from the original theory of Wiener [14] for the spectral representation of
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any second-order stochastic response in terms of Gaussian random variables. To
improve the expansion convergence rate, Xiu and Karniadakis [15] extended the
method, under the Askey polynomial scheme, to non-Gaussian random variables
(e.g., gamma, uniform, and beta). The types of random variables and the corre-
sponding orthogonal polynomial families are listed in Table 5.4. In the finite
dimensional random space X, a second-order stochastic response G, can be
expanded in a convergent series of generalized polynomial chaos basis as

G Xð Þ ¼ c0C0 þ
X1
i1¼1

ci1C1 fi1 Xð Þ� �

þ
X1
i1¼1

Xi1
i2¼1

ci1i2C2 fi1 Xð Þ; fi2 Xð Þ� �

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ci1i2i3C3 fi1 Xð Þ; fi2 Xð Þ; fi3 Xð Þ� �þ � � �

ð5:55Þ

where Cn fi1 Xð Þ; fi2 Xð Þ; . . .; fin Xð Þ� �
denotes the n-dimensional Askey-chaos of

order n in terms of the random variables fi1 ; fi2 ; . . .; fin
� �

. According to the
Cameron-Martin theorem [33], the polynomial chaos expansion in Eq. (5.55)
converges in the L2 sense (the mean square sense).

For the purpose of notational convenience, Eq. (5.55) is often rewritten as

G Xð Þ ¼
X1
i¼0

siWi f Xð Þð Þ; f ¼ f1; f2; . . .f g ð5:56Þ

where there exists a one-to-one mapping between the polynomial basis functions Cn

and Wi, and the PCE coefficients si and ci1;...;ir .
If the random variables f follow the standard normal distribution, the following

expression can be used to obtain the corresponding univariate Hermite polynomials
with an order p:

Table 5.4 Types of random inputs and corresponding generalized polynomial chaos basis

Random variable Polynomial chaos Support

Continuous Gaussian Hermite (−∞, +∞)

Gamma
(Exponential)

Generalized Laguerre (Laguerre) [0, +∞)

Beta Jacobi [a, b]

Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, …}

Binomial Krawtchouk {0, 1, …, N}

Negative binomial Meixner {0, 1, …}

Hypergeometric Hahn {0, 1, …, N}
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Wp fð Þ ¼ �1ð Þpef2=2 @
pe�f2=2

@pf
ð5:57Þ

Using the expression above, we can easily derive the first five Hermite polynomials,
expressed as

W0 ¼ 1; W1 ¼ f; W2 ¼ f2 � 1; W3 ¼ f3 � 3f; W4 ¼ f4 � 6f2 þ 3 ð5:58Þ

These polynomials are plotted in Fig. 5.10. Observe that higher-order Hermite
polynomials generally exhibit higher degrees of nonlinearity.

The univariate Hermite polynomials serve as the foundation for constructing the
multi-dimensional Hermite polynomials by taking tensor products. To do so, we
first define a multi-index p = {p1, p2,…, pN} whose ith element ik is the polynomial
order corresponding to the ith standard normal variable fi. We then define the
modulus of the multi-index p as

pj j ¼
XN
i¼1

pi ð5:59Þ

This definition enables us to construct multi-dimensional Hermite polynomials of
an order p as

WN
p fð Þ ¼

YN
i¼1

W1
pi fið Þ ð5:60Þ

Fig. 5.10 First five Hermite
polynomials (p � 4)
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satisfying |p| = p. For example, let us construct two-dimensional Hermite polyno-
mials of the orders |p| � 3. All multi-indices that satisfy this condition are listed as
follows:

p ¼ 0
0

���� 10 0
1

���� 20 1
1

0
2

���� 30 2
1

1
2

0
3

	 

ð5:61Þ

where the first and second rows contain the values for p1 and p2, respectively, and
the vertical lines separate a lower-order |p| from the adjacent higher-order |p| + 1.
Accordingly, the third-order PCE has the following form as

ð5:62Þ

The response surfaces of these multi-dimensional polynomials are plotted in
Fig. 5.11, where we again see that higher-order polynomials exhibit higher degrees
of nonlinearity.

The orthogonality of the Askey-chaos can be expressed as

E WiWj
� � ¼ dijE W2

i

� � ð5:63Þ

where dij is the Kronecker’s delta and E[�] is the expectation operator. This property
is very useful in computing the PCE coefficients, as will be discussed later. In
engineering practice, it is impractical to consider an infinite summation in
Eq. (5.56) and we often truncate the expansion up to a specific order p. All
N-dimensional polynomials of orders not exceeding p result in the truncated PCE as
follows (with P denoting the number of unknown PCE coefficients):

G xð Þ ¼
XP�1

i¼0

siWi fð Þ; x ¼ x1; x2; . . .; xNf g; f ¼ f1; f2; . . .fNf g ð5:64Þ

In the summation above, the number of unknown PCE coefficients P is

P ¼ Nþ p
p

� �
¼ N þ pð Þ!

N!p!
ð5:65Þ
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Determination of PCE Coefficients

Our interest is in reliability analysis for the performance function G with random
inputs X. Since the uncertainty of a stochastic response G can be fully characterized
by the PCE coefficients in Eq. (5.56), an efficient and accurate numerical procedure
to compute the coefficients is essential for reliability analysis. In general, there are
two non-intrusive methods, the projection method and the regression method; these
methods only require the response values at a set of sample points.

Fig. 5.11 Response surfaces of two-dimensional Hermite polynomials: a |p| = 0; b |p| = 1; c |
p| = 2; d |p| = 3
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Projection method

Based on the orthogonality of the polynomial chaos, the projection method [34,
35] can be used as a non-intrusive approach to compute the expansion coefficients
of a response. Pre-multiplying both sides of Eq. (5.56) by Wj(f) and taking the
expectation gives the following equation

E G Xð ÞWj fð Þ� � ¼ E
X1
i¼0

siWi fð ÞWj fð Þ
" #

ð5:66Þ

Due to the orthogonality of the polynomial chaos, Eq. (5.66) takes the form

sj ¼
E G Xð ÞWj fð Þ� �
E W2

j fð Þ
h i ð5:67Þ

In this expression, the denominator is readily obtained in an analytical form, while
the numerator may require a multi-dimensional integration. This integration may be
accomplished by full tensorization of a one-dimensional Gaussian quadrature [35],
crude MCS [36], or through a Smolyak sparse grid [16]. The relative merits and
disadvantages of these approaches are discussed below:

Approach 1: The full tensorization of a one-dimensional Gaussian quadrature
exhibits fast convergence for smooth integrands. However, the computational cost
grows exponentially with the dimension N: M = M1

N, which is known as the “curse
of dimensionality.” Here, M denotes the total number of function evaluations and
M1 denotes the number of one-dimensional quadrature points. To prevent large
integration errors, M1 should be at least equal to the PCE order p.
Approach 2: Crude MCS is robust and has a convergence rate that is asymptoti-
cally independent of the dimension N [37]. However, the convergence is very slow
(as 1=

ffiffiffiffiffi
M

p
). Thus, accurate results require a large number of function evaluations,

which may incur an intolerable computational burden, especially for complex
engineered systems that are computationally intensive.
Approach 3: The sparse grid collocation based on the Smolyak algorithm [16]
offers an alternative way for multidimensional integration [38]. Compared with
a fully tensorized quadrature, it also achieves fast convergence for smooth inte-
grands but with much lower computational cost. Recently, adaptive algorithms [17,
39] have been developed that further reduce the computational cost. However, the
sparse grid collocation methods still cannot fully resolve the difficulty induced by
the “curse of dimensionality.”

Regression method

The regression method is another non-intrusive approach that can be used to
compute the PCE coefficients. The basic idea is to conduct a least-square regression
of the exact performance function with respect to the basis functions Wj(f), for
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j = 1, 2, …, P − 1, in Eq. (5.64). Let us assume that we have a set of M regression
points, f1, f2, …, fM, in the standard input space (e.g., standard normal space,
standard uniform space) and correspondingly a set of M regression points, x1, x2,
…, xM, in the original input space. The regression method computes the PCE
coefficients by minimizing the mean square error (MSE) as

S ¼ argmin
1
M

XM
j¼1

G xið Þ �
XP�1

i¼0

siWi fj
� �" #2

ð5:68Þ

Let us define an M � P information matrix W whose elements are defined as
Wij = Wj(fi), and an M-element response vector G = [G(x1), G(x2), …, G(xM)]T.
Then, the solution to the minimization problem in (5.68) can be expressed as

S ¼ WTW
� ��1�WT �G ð5:69Þ

Now the remaining question is how to select the regression points. Let us first
consider a univariate case (N = 1) where the PCE is truncated up to the degree
p (clearly, P = p + 1). The optimum regression points are given by the roots of the
orthogonal polynomial of the order p + 1, that is {r1, r2,…, rp+1}. For example, the
optimum regression points for a third-order PCE (p = 3) with Hermite polynomials
can be obtained by equating the fourth-order Hermite polynomial to zero, that is f4

− 6f2 + 3 = 0, which gives us the following points: −2.3344, −0.7420, 0.7420 and
2.3344. For a general multivariate case (N > 1), an optimum set of regression points
can be obtained by applying the tensor-product formula to the univariate points {r1,
r2, …, rp+1}, which can be explicitly expressed as

rk ¼ ri1 ; ri2 ; . . .; riNð Þ; 1� i1 � i2 � � � � � iN � pþ 1 ð5:70Þ

for k = 1, 2, …, (p + 1)N. Note that, in cases of high dimensions (N) or high orders
(p), the computational cost of a full tensor-product formula becomes intolerably
expensive. The research efforts to address this issue have resulted in the idea of
selecting a subset of the full tensor-product points [40, 41]. One way is to choose
the first (N − 1)P roots with the smallest Euclidean distances to the origin [40].
Another way is to sort the tensor-product points according to increasing Euclidean
distances and adaptively add the point into the information matrix until WTW
becomes invertible, which was reported to give less than (N − 1)P regression points
[41]. It should also be noted that, for very high expansion orders (e.g., above 20),
the regression method with even full tensor-product points can encounter numerical
instability, i.e., the term WTW is ill-conditioned. In such cases, we need to rely on
the projection method to compute the PCE coefficients.

Recently, to estimate small failure probability, shifted and windowed Hermite
polynomial chaos were proposed to enhance the accuracy of a response surface in
the failure region [42]. Although the PCE method is considered to be accurate, the
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primary drawback of the method is the curse of dimensionality, which substantially
increases the computational cost as the number of random variables increases.

Example 5.4 This example examines Fortini’s clutch, shown in Fig. 5.12.
This problem has been extensively used in the field of tolerance design [43,
44]. As shown in Fig. 5.12, the overrunning clutch is assembled by inserting
a hub and four rollers into the cage.

The contact angle y between the vertical line and the line connecting the
centers of two rollers and the hub, is expressed in terms of the independent
component variables, x1, x2, x3, and x4 as follows:

y xð Þ ¼ arccos
x1 þ 0:5 x2 þ x3ð Þ
x4 � 0:5 x2 þ x3ð Þ
� �

The statistical information of the random variables is summarized in
Table 5.5. The limit-state function was defined as G = y − c, where c speci-
fies a limit-state value and is set as 5° in this example.

Compute the statistics of the limit-state function and the reliability R = Pr
(y − c � 0) using the first- and second-order PCEs and compare the results
with those from direct MCS.

Table 5.5 Statistical information of the random variables in Example 5.4

Component Distribution type Mean (mm) Std. dev. (mm)

x1 Normal 55.29 0.0793

x2 Normal 22.86 0.0043

x3 Normal 22.86 0.0043

x4 Normal 101.60 0.0793

Fig. 5.12 Fortini’s clutch. Reprinted (adapted) with permission from Ref. [44]
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Solution
Let us first compute the expansion coefficients for the first-order PCE. We
solve f2 − 1 = 0 for the roots of the second-order Hermite polynomial, which
gives us r1 = − 1 and r2 = 1. We then obtain 24 = 16 tensor-product
regression points fj = (f1,j, f1,j, f1,j, f1,j), for j = 1, 2, …, 16. Using these, we
construct the information matrix of the following form:

W ¼
1
1
..
.

1

f1;1
f1;2
..
.

f1;16

f2;1
f2;2
..
.

f2;16

f3;1
f3;2
..
.

f4;16

f4;1
f4;2
..
.

f4;16

2
6664

3
7775

and the response matrix of the following form:

G ¼
G x1 f1ð Þð Þ
G x2 f2ð Þð Þ

..

.

G x16 f16ð Þð Þ

2
6664

3
7775

Next, we conduct a least square regression using Eq. (5.69) to obtain the PCE
coefficients and construct the PCE model as

Ĝ pj j¼2 ¼ 0:03465 � 0:00831f1 � 0:00045f2 � 0:00045f3 þ 0:00826f4

Similarly, we can go through the same process and construct the second-order
PCE model as

Ĝ pj j¼3 ¼ 0:03466� 0:00843f1 � 0:00046f2 � 0:00046f3 þ 0:00837f4

� 0:00030 f21 � 1
� �þ 0:00000 f22 � 1

� �þ 0:00000 f23 � 1
� �

� 0:00031 f24 � 1
� �� 0:00003f1f2 � 0:00003f1f3 þ 0:00060f1f4

þ 0:00000f2f3 þ 0:00003f2f4 þ 0:00003f3f4

The PDF approximations of the first- and second-order PCEs and direct MCS
with 1,000,000 samples are compared in Fig. 5.13. Observe that the PDF
approximation is improved from the first-order to the second-order through
inclusion of the second-order orthogonal Hermite polynomials in the PCE
model.

Table 5.6 summarizes the probability analysis results for the first- and
second-order PCEs, and compares these with direct MCS. The second-order
PCE produces more accurate results than its first-order counterpart but
requires more computational effort (in terms of original performance function
evaluations). The second-order PCE gives comparable accuracy to direct
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MCS but is far more efficient, which suggests that a PCE model with a
sufficiently high order can be used as a better alternative to direct MCS for
reliability.

5.5.3 Stochastic Collocation Method

Great attention has been paid to the stochastic collocation method for approximating
a multi-dimensional random function due to its strong mathematical foundation and
its ability to achieve fast convergence for interpolation construction. This method is
another SRSM that approximates a multi-dimensional random function using
function values given at a set of collocation points. In the stochastic collocation

Fig. 5.13 PDF approximations for the Fortini’s clutch example

Table 5.6 Probability analysis results in Example 5.4

MCS PCE (p = 1) PCE (p = 2)

Mean (rad) 0.0346 0.0346 0.0346

Std. dev. (rad) 0.0118 0.0117 0.0119

Skewness −0.3159 0.0044 −0.3062

Kurtosis 3.2936 2.9939 3.1232

Pr(y < 5 deg) 0.004856 0.001533 0.004484

No. FE 1,000,000 16 81
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method, the great improvement in reducing the curse of dimensionality in numerical
integration was accomplished by Smolyak [16], who introduced the concept of the
sparse grid. Compared to a full grid, the sparse grid achieves the same accuracy
level for integration and interpolation but with a much smaller number of collo-
cation points. The dimension-adaptive tensor-product (DATP) quadrature method
introduced the concept of the generalized sparse grid and leveraged the dimensional
importance indicated by an error estimator to adaptively refine the collocation points
for efficient multi-dimensional integration [17]. Compared to the conventional
sparse grid interpolation, the generalized sparse grid interpolation (i.e., the
dimension-adaptive tensor-product interpolation) achieves a substantially higher
convergence rate by detecting important dimensions and placing more collocation
points in those dimensions. Klimke [18] further developed this work for hierarchical
interpolation by using either piecewise multi-linear basis functions or Lagrangian
polynomials. In this method, all dimensions in the random space are not considered
of equal importance and an adaptive sampling scheme automatically detects the
highly nonlinear dimensions and adaptively refines the collocation points in those
dimensions. Recently, a further improvement of the adaptive capability of the
DATP method was achieved in [45], where the authors introduced the concept of
the directional sparse grid (DSG) and developed an asymmetric dimension-adaptive
tensor-product (ADATP) method to detect both dimensional and directional
importance; this has promising applications in reliability analysis. In this section, we
present the stochastic collocation methods using the tensor-product grid, the con-
ventional and generalized sparse grids, the hierarchical interpolation scheme using
multivariate hierarchical basis functions, and the DSG.

In what follows, we will model the N-dimensional real random variables
X = (x1, x2,…, xN)T in a complete probability space (X, A, P), where X is a sample
space, A is a r-algebra on X, and P is a probability measure function P: A ! [0,
1]. Then, the probability density function (PDF) of the random variable xi defines a
probability mapping fi(x

i): Pi ! ℝ+, where the support Pi is a one-dimensional
random space of xi. Note that, in this section, the superscript i is used to denote the
index of the random variable; this differs from our previous discussions. Under the
assumption of statistical independence, the probabilistic characteristics of the ran-
dom variables x can then be completely defined by the joint PDF fX(x) = f1(x

1)�
f2(x

2)�···�fN(xN) with the support of P = P1�P2�···�PN. Since the construction of an
interpolation in the stochastic collocation method often requires a specially bounded
support C = [0, 1]N of the random variables x, we first truncate any unbounded
one-dimensional random space Pi (e.g., in the case of a Gaussian random variable)
to a bounded one Ci* = [ci, di] that achieves a nearly full coverage of Pi and then
map any truncated one-dimensional support [ci, di] to [0, 1], resulting in a bounded
hypercube C = [0, 1]N. Let g(x) denote a smooth, measurable performance function
on (X, A), which can be treated as a one-to-one mapping between the transformed
N-dimensional random space and one-dimensional space G: [0, 1]N ! ℝ. In
general, the performance function G(X) cannot be analytically obtained, and the
function evaluation of G for a given input x requires expensive computer simula-
tion. Therefore, it is important to employ a numerical method for reliability analysis
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that is capable of producing accurate probabilistic characteristics of g(x) with an
acceptably small (i.e., computationally efficient) number of function evaluations.

Classical Stochastic Collocation: Tensor-Product Grid

The stochastic collocation method basically approximates the performance function
G using N-dimensional interpolating functions with performance function values at
a finite number of collocation points H ¼ fxjjxj 2 C; j ¼ 1; . . .;MTg. Suppose that
we can obtain the performance function value G(xj) at each collocation point xj. We
then aim to build an interpolation or surrogate model of the original performance
function g by using the linear combinations of these function values G(xj). The
sampling process to construct this interpolation can be accomplished by using a
tensor-product grid, a conventional sparse grid based on the Smolyak algorithm
[16], or a generalized sparse grid based on the dimension-adaptive tensor-product
algorithm [17]. We begin by constructing the interpolation using a tensor-product
grid, or the tensor-product of one-dimensional interpolation formulas.

In the one-dimensional case (N = 1), we can construct the following
one-dimensional interpolation

Ui gð Þ ¼
Xmi

j¼1

aij � G xij
� �

ð5:71Þ

with a set of support nodes

Xi ¼ xijjxij 2 0; 1½ �; j ¼ 1; 2; . . .;mi

n o
ð5:72Þ

where i 2 ℕ is the interpolation level, aj
i 2 C([0,1]) is the jth interpolation nodal

basis function, xj
i is the jth support node, and mi is the number of support nodes in

the interpolation level i. Note that we use the superscript i to denote the interpo-
lation level during the development of the stochastic collocation method. Two
widely used nodal basis functions are the piecewise multi-linear basis function and
the Lagrange polynomial. Here, we briefly describe the fundamentals of piecewise
multi-linear basis functions. To achieve faster error decay, the Clenshaw-Curtis grid
with equidistant nodes is often used for piecewise multi-linear basis functions [18].
In the case of a univariate interpolation (N = 1), the support nodes are defined as

mi ¼
1 if i ¼ 1

2i�1 þ 1; if i[ 1



xij ¼
j�1
mi�1 for j ¼ 1; . . .;mi if mi [ 1

0:5 for j ¼ 1; . . .;mi if mi ¼ 1

( ð5:73Þ

The resulting set of the points fulfills the nesting property Xi � Xi+1 that is very
useful for the hierarchical interpolation scheme detailed later. Then, the univariate
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piecewise multi-linear basis functions, supported by the Clenshaw-Curtis grid, can
be expressed as [18]

aij ¼ 1 for i ¼ 1

aij ¼
1� mi � 1ð Þ � x� xij

��� ���; if x� xij

��� ���\1= 1� mið Þ
0; otherwise

(
ð5:74Þ

for i > 1. More detailed information on the one-dimensional interpolation can be
found in [18].

Applying the sequence of formulas in Eq. (5.71) to the original performance
function G in a nested form for all N dimensions, we can easily derive the
tensor-product of multiple one-dimensional interpolation formulas as the following
multi-dimensional interpolation formula

Ui1 � � � � � UiN
� �

Gð Þ ¼
Xm1

j1¼1

� � �
XmN

jN¼1

ai1j1 � � � � � aiNjN

� �
� G xi1j1 ; . . .; x

iN
jN

� �
ð5:75Þ

where the superscript ik, k = 1, …, N, denotes the interpolation level along the kth
dimension, Uik are the interpolation functions with the interpolation level ik along
the kth dimension, and the subscript jk, k = 1, …, N, denotes the index of a given
support node in the kth dimension. The number of function evaluations required by
the tensor-product formula reads

MT ¼ m1 � m2 � � �mN ð5:76Þ

Suppose that we have the same number of collocation points in each dimension,
i.e., m1 = m2 = ··· = mN � m, and that the total number of tensor-product collo-
cation points is MT = mN. Even if we only have three collocation points (m = 3) in
each dimension, this number (MT = 3N) still grows very quickly as the number of
dimensions is increased (e.g., MT = 310 *6 � 104, for N = 10). Thus, we need
more efficient sampling schemes than the tensor-product grid to reduce the amount
of computational effort for multi-dimensional interpolation. The search for such
sampling schemes has resulted in sparse grid methods, the fundamentals of which
are briefly introduced in subsequent sections.

Smolyak Algorithm: Conventional Sparse Grid

Compared to the classical tensor-product algorithm, the Smolyak algorithm
achieves an order of magnitude reduction in the number of collocation points, while
maintaining the approximation quality of the interpolation by imposing an
inequality constraint on the summation of multi-dimensional indices [16]. This
inequality leads to special linear combinations of tensor-product formulas such that
the interpolation error remains the same as for the tensor-product algorithm.
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The Smolyak formulas A(q, N) are special linear combinations of tensor-product
formulas. Using tensor-products of one-dimensional interpolation functions, the
Smolyak algorithm constructs a sparse, multi-dimensional interpolation, expressed as

Aq;N Gð Þ ¼
X

q�Nþ 1� ij j � q

�1ð Þq� ij j� N � 1
q� ij j

� �
� Ui1 � � � � � UiN
� �

Gð Þ ð5:77Þ

where i = (i1, …, iN) is the multi-index, and |i| = i1+���+ iN. The formula above
indicates that the Smolyak algorithm builds the multi-dimensional interpolation by
considering one-dimensional functions of interpolation levels i1, …, iN under the
constraint that the sum of these interpolation levels lies within the range [q − N + 1,
q]. Figure 5.14 shows an example of two-dimensional (N = 2) nodes derived from a
sparse grid A4,2 with |i| � 4 and from a tensor-product grid based on the same
one-dimensional points. Observe that the number of points in the sparse grid is
significantly smaller than that in the tensor-product grid. The 2D Clenshaw-Curtis
grids for different levels of resolutions specified by different q values are plotted in
Fig. 5.15.

With the incremental interpolant, Di ¼ Ui�Ui�1;U0 ¼ 0, the Smolyak formulas
can be equivalently written as

Aq;N Gð Þ ¼
X
ij j � q

Di1 � � � � � DiN
� �

Gð Þ

¼ Aq�1;N gð Þþ
X
ij j¼q

Di1 � � � � � DiN
� �

Gð Þ
ð5:78Þ

The formulas above suggest that the Smolyak algorithm improves the interpolation
by utilizing all of the previous interpolation formulas Aq−1,N and the current
incremental interpolant with the order q. If we select the sets of support nodes in a
nested fashion (i.e., Xi � Xi+1) to obtain recurring points (e.g., the Clenshaw-Curtis
grid) when extending the interpolation level from i to i + 1, we only need to
compute function values at the differential grids that are unique to Xi+1,

i1 = 2i1 = 1

i2 = 2

i2 = 1

i2 = 3

i1 = 3

Sparse grid Tensor-product

Fig. 5.14 Comparison of a sparse grid and a tensor-product grid (sparse grid for |i| � 4,
tensor-product grid based on the same one-dimension points)
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XD
i+1 = Xi+1\Xi. In such cases, to build a sparse multi-dimensional interpolation with

the order q, we only need to compute function values at the nested sparse grid

Hq;N ¼
[
ij j � q

Xi1
D � � � � � XiN

D

� � ¼ Hq�1;N [DHq;N

DHq;N ¼
[
ij j¼q

Xi1
D � � � � � XiN

D

� � ð5:79Þ

where ΔHq,N denotes the grid points required to increase an interpolation order from
q − 1 to q.

Although the Smolyak algorithm greatly reduces the number of collocation
points for the multi-dimensional interpolation compared to the tensor-product
algorithms, there is still a possibility that the number of function evaluations can be
further reduced in cases where the performance function exhibits different degrees
of nonlinearity in the stochastic dimensions. To achieve such a reduction, one must
adaptively detect the dimensions with higher degrees of nonlinearity and assign
more collocation points to those dimensions. This can be accomplished by using the
dimension-adaptive tensor-product algorithm, which is detailed in the next
subsection.

Dimension-Adaptive Tensor-Product Algorithm: Generalized Sparse Grid

For a given interpolation level l, the conventional sparse grid requires the index set
Il,N = {i | |i| � l + N} to build the interpolation A(l + N, N). If we loosen the

Fig. 5.15 Clenshaw-Curtis grids with different levels of resolution
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admissibility condition on the index set, we can construct the index set of the
generalized sparse grid [17]. An index set I is called admissible if for all i 2 I,

i� ek 2 I for 1� k�N; ik [ 1 ð5:80Þ

Here, ek is the kth unit vector. This admissibility condition still satisfies the tele-
scopic property of the incremental interpolant Δi = Ui − Ui−1. Thus, we can take
advantage of the previous interpolation to construct a better interpolation by just
sampling the differential grids that are unique to the finer interpolation, as shown in
Eqs. (5.78) and (5.79). In each step of the algorithm, an error indicator is assigned
to each multi-index i. The multi-index it with the largest estimated error is selected
for adaptive refinement, since it is possible that a larger error reduction can be
achieved. The admissible indices in the forward neighborhood of it are added to the
index set I. The forward neighborhood of an index i can be defined as

IF ið Þ ¼ iþ ek; 1� k�Nf g ð5:81Þ

In each step, the newly added indices are called active indices and grouped as an
active index set IA; whereas, those indices whose forward neighborhood has been
refined are called old indices and grouped as an old index set IO. The overall index
set I is comprised of the active and old index sets: I ¼ IA [ IO.

Note that in the dimension-adaptive algorithm, the generalized sparse grid
construction allows for adaptive detection of the important dimensions, and thus a
more efficient refinement compared to the conventional sparse grid interpolation.
However, in engineering practice, not only different dimensions but also two
opposite directions (positive and negative) within one dimension often demonstrate
a large difference in response nonlinearity. In such cases, it is desirable to place
more points in the direction with higher nonlinearity. The dimension-adaptive
algorithm may not be appropriate for this purpose.

Hierarchical Interpolation Scheme

For dimension-adaptive interpolation, the hierarchical interpolation scheme provides
a more convenient way for error estimation than the nodal interpolation scheme [18].
Here, we start by deriving the hierarchical interpolation formulae in the case of the
univariate interpolation, which takes advantage of the nested characteristic of grid
points (i.e., Xi � Xi+1). Recall the incremental interpolant, Di ¼ Ui�Ui�1. Based on
Eq. (5.71) and Ui�1 Gð Þ ¼ Ui Ui�1 Gð Þð Þ, we can write [18]

Di Gð Þ ¼ Ui Gð Þ � Ui Ui�1 Gð Þ� �
¼
X
xij2Xi

aij � G xij
� �

�
X
xij2Xi

aij � Ui�1 Gð Þ xij
� �

¼
X
xij2Xi

aij � G xij
� �

� Ui�1 Gð Þ xij
� �� � ð5:82Þ

5.5 Stochastic Response Surface Methods 143



www.manaraa.com

Because for all xij 2 Xi�1;GðxijÞ �Ui�1 Gð ÞðxijÞ ¼ 0, Eq. (5.82) can be rewritten as

Di Gð Þ ¼
X
xij2Xi

D

aij � G xij
� �

� Ui�1 Gð Þ xij
� �� �

ð5:83Þ

Because Xi � Xiþ 1, the number of grid points in Xi
D reads

mi
D ¼ mi � mi�1 ð5:84Þ

By denoting the jth element of Xi
D by xj

i, Eq. (5.83) can be rewritten as

Di Gð Þ ¼
Xmi

D

j¼1

aij � G xij
� �

� Ui�1 Gð Þ xij
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wi
j

ð5:85Þ

Here, wj
i is defined as the hierarchical surplus, which indicates the interpolation

error of a previous interpolation at the node xj
i of the current interpolation level

i. The bigger the hierarchical surpluses, the larger the interpolation errors. For
smooth performance functions, the hierarchical surpluses approach zero as the
interpolation level goes to infinity. Therefore, the hierarchical surplus can be used
as a natural candidate for error estimation and control. Figure 5.16 shows the
comparison between the hierarchical and nodal basis functions with a piecewise
linear spline and a Clenshaw-Curtis grid [18, 45]. Figure 5.17 illustrates the
comparison between the hierarchical and nodal interpolation. Based on the Smolyak
formula in Eq. (5.78), a multivariate hierarchical interpolation formula can be
obtained as [18, 45].

3
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Fig. 5.16 Nodal basis functions a3j ; x
3
j 2 X3 (a) and hierarchical basis functions aij with the

support nodes xij 2 Xi
D; i ¼ 1; 2; 3 (b) for the Clenshaw-Curtis grid. Reprinted (adapted) with

permission from Ref. [45]
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Aq;N Gð Þ ¼ Aq�1;N Gð ÞþDAq;N Gð Þ
¼ Aq�1;N Gð Þ
þ
X
ij j¼q

X
j

ai1j1 � � � � � aiNjN

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

aij

� G xi1j1 ; . . .; x
iN
jN

� �
� Aq�1;N Gð Þ xi1j1 ; . . .; x

iN
jN

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wi
j

ð5:86Þ

Asymmetric Dimension-Adaptive Tensor-Product Method

A recent development directed at enhancing the adaptive feature of the
dimension-adaptive algorithm is the concept of the directional sparse grid (DSG)
[45], which allows consideration of both directional and dimensional importance in
multidimensional interpolation. For construction of the DSG, a conventional index
i in the case of the univariate interpolation is decomposed into positive and negative
directional indices (DIs) as ID = {i+, i−}. The positive (negative) DI i+ (i−) corre-
sponds to the kth level interpolation points whose values are larger (smaller) than
the value (0.5) of the center grid point. For the multivariate case (N > 1), we obtain
a tensor-product formula of DI sets for a multi-index i as

ID ¼ ID1 � � � � � IDN ð5:87Þ

where, IDk ¼ iþk ; i�k
� �

; 1 � k�N. Here, the forward neighborhood of a

multi-dimensional DI id 2 ID is defined as the N indices id þ eþ =�
k

n o
; 1� k�N,

and the sign of the kth directional unit vector ek
+/− is the same as that of the kth

element ik
d of id. An example of the tensor-product grid and a DSG in a

two-dimensional space (N = 2) is shown in Fig. 5.18. Observe that the DI in a DSG
divides the original index space into four quadrants; this division allows for an
adaptive refinement of the quadrature points in these quadrants.
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Fig. 5.17 Nodal (a) and hierarchical (b) interpolations in 1D. Reprinted (adapted) with permis-
sion from Ref. [45]
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Based on the proposed concepts of the DI and DSG, the overall procedure of
ADATP interpolation is briefly summarized in Table 5.7. The relative error indi-
cator used in the interpolation scheme can be defined for a DI i as

er ið Þ ¼ 1
Gmax � Gminð ÞMi

X
j

wi
j

��� ��� ð5:88Þ

where wj
i are the hierarchical surpluses of the collocation points

Xi ¼ Xi1
D � � � � � XiN

D ; with j ¼ j1; . . .; jNð Þ; jk ¼ 1; . . .;mik
D; 1� k�N, and Mi ¼

mi1
D � mi2

D � � � � � miN
D . Note that, for simplicity, i ¼ i1; . . .; iNð Þ is used instead of id ¼

id1; . . .; i
d
N

� �
to denote a multi-dimensional DI and that the term “index” in the

Table 5.7 Procedure for ADATP interpolation. Reprinted (adapted) with permission from Ref.
[45]

Step 1 Set an initial interpolation level l (q − N) = 0; set the initial old index set IO = Ø and
the initial active index set IA = {i}, where the initial active DI i = (1, …, 1) is the
center point (0.5, …, 0.5); set an initial relative error indicator er(i) = 1

Step 2 Select a trial index set IT (from IA) with the error indicator greater than a relative
error threshold value eC; move the active index set IA to the old index set IO. If
IT = Ø, go to Step 7

Step 3 Select and remove the trial index it with the largest error indicator from IT; if none,
go to Step 6. If the number of the collocation points M exceeds the maximum
number Mmax, go to Step 7

Step 4 Generate the forward neighborhood IF of it and add IF to the active index set IA
Step 5 Compute the hierarchical surplus of each new added point based on the collocation

points in the old index set and compute the error indicator of each active index. Go
to Step 3

Step 6 Set an interpolation level l = l + 1 and go to Step 2

Step 7 Construct an explicit interpolation Ĝ of the performance function G

i1
+ = 2+i1 = 1i1

– = 2–

i2
– = 2–

i2 = 1

i2
+ = 2+

i2
+ = 3+

i2
– = 3–

i1
– = 3– i1

+ = 3+

Tensor grid DSG

Fig. 5.18 Comparison of tensor-product (tensor) grid and a DSG in a two-dimensional space
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description of the ADATP method refers to the DI. Under the scheme of asym-
metric sampling, it is expected that the error decay is at least as fast as that of the
DATP interpolation.

Once the asymmetric dimension-adaptive sampling procedure is completed, an
approximate function Ĝ of the original performance function G can be obtained by
interpolation using the hierarchical basis functions at the collocation points. Thus,
any probabilistic characteristics of G(x), including statistical moments, reliability,
and PDF, can be easily estimated by performing MCS, as described in Sect. 5.3.1.

Example 5.5 This example utilizes the V6 gasoline engine problem intro-
duced by Lee [46]. The performance function considered in this example is
the power loss (PL) due to the friction between the piston ring and the
cylinder liner, oil consumption, blow-by, and liner wear rate. A ring/liner
subassembly simulation model was used to compute the PL. The simulation
model has four input parameters, ring surface roughness x1, liner surface
roughness x2, linear Young’s modulus x3, and linear hardness x4. Of the four
total inputs, the first two, ring surface roughness x1 and linear surface
roughness x2, were treated as random inputs following normal distributions
with mean 4.0 and 6.119 µm, respectively, and with unit variance. The other
two inputs, linear Young’s modulus x3 and linear hardness x4, were treated as
deterministic inputs fixed at 80 GPa and 240 BHV, respectively. It has been
shown in [46] that the PL has a bimodal PDF.

Compare the accuracy of the UDR, PCE, and ADATP methods in
reproducing the PDF of the PL, and the accuracy of FORM, UDR, PCE, and
ADATP methods in estimating the reliability defined as P(PL � 0.3).

Fig. 5.19 PDF approximations for the V6 engine example. Reprinted (adapted) with
permission from Ref. [45]
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Solution
To predict the bimodal shape of the PDF, the ADATP method uses
eC = 0.005, Mmax = 70, and cubic Lagrange splines [47] as the hierarchical
basis functions. Figure 5.19 shows the PDF approximations of the 25th order
PCE with a fully tensorized Gauss–Hermite quadrature (mI = 25), the UDR
method, the ADATP method, and MCS. Both the ADATP and the PCE
methods provide reasonably accurate approximations of the irregularly
shaped PDF, while the UDR method fails to represent the irregular shape of
this PDF. The probability analysis results shown in Table 5.8 suggest that the
number of function evaluations of the ADATP method is much smaller than
that of the PCE method with a fully tensorized Gaussian quadrature. In this
example, the FORM requires the smallest number of function evaluations
while still producing a good reliability estimate. The small error produced by
FORM is due to the nonlinearity of the power loss function. However, FORM
cannot be used for cases that require the construction of a complete PDF and
subsequent uncertainty propagations.

5.6 Exercises

5:1 Consider the cantilever beam-bar system in Problem 4.1 (see Fig. 4.9) in
Chap. 4. Suppose that a failure mode consists of two failure events: the
formation of a hinge at the fixed point of the beam (event �E1), followed by the
formation of another hinge at the midpoint of the beam (event �E3). The two
safety events can be expressed as:

Table 5.8 Probability analysis results for the V6 engine example . Reprinted (adapted)
with permission from Ref. [45]

ADATP MCS PCE
(p = 25)

20 N + 1
UDR

FORM

Mean (kW) 0.3935 0.3935 0.3934 0.3935 –

Std. dev.
(kW)

0.0311 0.0310 0.0311 0.0314 –

Skewness −0.6062 −0.5883 −0.5742 −0.5393 –

Kurtosis 3.0567 3.0828 3.0566 3.0974 –

P(PL �
0.3)

0.0055 0.0054
(±0.0005a)

0.0057 0.0048 0.0057

No. FE 72 100,000 625 41 15
aError bounds computed with a 95% confidence level
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E1 ¼ X; L;Mj3LX=8�M� 0f g;
E3 ¼ X; L;MjLX=3�M� 0f g

The statistical information of the independent input random variables X, L, and
M is given in Table 5.9.

(1) Assuming lX = 60, compute the reliabilities R1 and R3 corresponding to
E1 and E3 using the following methods, and compare the results in terms
of accuracy and efficiency.

(a) Method 1: Direct MCS with 1 million random samples.
(b) Method 2: FORM (HL-RF).
(c) Method 3: UDR with the number of univariate sample points m = 5.
(d) Method 4: Second-order (p = 2) PCE with the expansion coeffi-

cients computed using the regression method.

(2) Assuming lX = 10, re-compute the reliabilities R1 and R3 corresponding
to E1 and E3 using the methods listed in (1) and compare the results in
terms of accuracy and efficiency.

5:2 Recall Problem 4.2 in Chap. 4. Suppose S, X, Y, w, and t are independent
random variables whose means and standard deviations are summarized in
Table 5.10.

(1) Determine the PDF (or CDF) of G and estimate its reliability, defined as
P(G � 0), using (a) direct MCS (with 1 million random samples),
(b) the first-order expansion method and (c) the DR-based method (UDR
with the number of univariate sample points m = 5). Discuss and explain
your conclusions.

(2) Assume that the mean of S degrades in the following manner:
lS(t) = 400,000 − 100t while the variation of S remains unchanged.
Estimate the time-dependent reliabilities at t = 0, 100, 200, …, 1000
using the three methods in (1) and plot these estimates against time for all
the methods.

Table 5.10 Statistical information for the random variables in Problem 5.2

Random variables X [lb] Y [lb] S [psi] w [in] t [in]

Distribution Normal Normal Normal Normal Normal

Mean 500 1000 400,000 2 1

Standard deviation 100 100 20,000 0.02 0.01

Table 5.9 Statistical
information of random
variables for Problem 5.1

Random variable M X L

Distribution Normal Normal Normal

Mean 150 lX 5.0

Standard deviation 30 20 0.05
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5:3 Consider the following simply supported beam subject to a uniform load, as
illustrated in Fig. 5.20. Suppose L = 5 m, and two random variables EI (X1)
and w (X2) are independent and follow normal distributions with means and
standard deviations summarized in Table 5.11.
The maximum deflection of the beam is shown as

YðX1;X2Þ ¼ � 5X2L4

384X1

Failure is defined as when Y < yc = −3 � 10−3 m. Determine the PDF (or
CDF) of the maximum deflection and estimate its reliability using (a) direct
MCS (with 1 million random samples), (b) the first-order expansion method,
and (c) the MPP-based method (FORM with HL-RF). Discuss and explain
your conclusions.

5:4 Consider a mathematical function

G Xð Þ ¼ exp
XN¼5

k¼1

Xk � 1ð Þ2 �
XN¼5

k¼3

X2
k X

2
k�1X

2
k�2

" #

where the five random variables X1–X5 are assumed to be statistically
independent and uniformly distributed between 0 and 1. Compute the mean µG
and standard deviation rG of G(X) using the following methods, and compare
the results in terms of accuracy and efficiency.

(a) Method 1: Direct MCS with 1 million random samples.
(b) Method 2: UDR based on Gauss-Legendre quadrature [48] with the

number of one-dimensional quadrature points mI = 5.

w per unit length

L

EI

Fig. 5.20 Simply supported
beam subject to a uniform
load

Table 5.11 Statistical
information of random
variables for Problem 5.3

Random variable X1 [N m2] X2 [N/m]

Distribution Normal Normal

Mean 30,000,000 10,000

Standard deviation 100,000 1000
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(c) Method 3: BDR based on fully tensorized Gauss-Legendre quadrature
[48] with the number of one-dimensional quadrature points mI = 5.

(d) Method 4: ADATP with the relative error threshold eC = 0.10, the
maximum number of collocation points Mmax = 120, and cubic Lagrange
splines as the hierarchical basis functions.

Appendix: A 99-Line MATLAB Code for UDR-Based
SRSM

% A 99-LINE UDR-BASED SRSM CODE WRITTEN BY HU C., Wang P., AND YOUN B.D. %

function UDR_RS()

clear all; close all;

u = [0.4 0.4]; %% Mean vector of random variables

s = [0.01 0.01]; %% Standard deviation vector

%======================= Generate MCS samples =======================%

ns = 5000000; %% Number of MCS samples

nv = length(u); %% Number of input random variables

xs = zeros(nv,ns); %% Initialization of MCS sample vector

for k = 1:nv

xs(k,:) = normrnd(u(k),s(k),1,ns);

end

%==================== Obtain Univariate Samples =====================%

[output,input,gg] = UDR_sampling(u,s);

%================ Compute Univariate Response Surface ================%

% Step 1: obtain univariate component function values

uniComp = zeros(nv,ns);

for k = 1:nv

uniComp(k,:) = interp1(input(k,:),output(k,:),xs(k,:),′spline′);

end

% Step 2: combine univariate responses with UDR formula

zz = squeeze(uniComp(:,:));

response_URS = sum(zz,1)-(nv-1)*gg;

%=============== Compute True Responses by Direct MCS =================%

response_true = findresponse(xs);

%================= Conduct Reliability Analysis =====================%

rel_URS = length(find(response_URS < 0))/ns
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rel_true = length(find(response_true < 0))/ns

%=============== Plot Probability Density Functions ==================%

% Plot PDF computed from univariate response surface

figure(′DefaultAxesFontSize′,16)

D = response_URS;

[cn,xout] = hist(D,100);

sss = sum(cn);

unit=(xout(100)-xout(1))/99;

for k = 1:100

cn(k)=cn(k)/sss/unit;

end

plot(xout,cn,′k-′); hold on;

clear D cn xout;

% Plot true PDF from direct MCS

D = response_true;

[cn,xout] = hist(D,100);

sss = sum(cn);

unit=(xout(100)-xout(1))/99;

for k = 1:100

cn(k)=cn(k)/sss/unit;

end

plot(xout,cn,′r*′); hold on;

clear D cn xout;

legend(′UDR-SRSM′,′MCS′);

xlabel(′{\itG}({\bfX})′); ylabel(′Probability density′);

%=============== Obtain Univariate Samples ==========================%

function [output,input,gg] = UDR_sampling(u,s)

u_loc = [-3.0,-1.5,0,1.5,3.0]; %% Sample locations: [u+/-3.0s, u+/-

1.5s, u]

nv = length(u); %% Dimension of the problem

m = length(u_loc); %% Number of samples along each dimension

input = zeros(nv,m);

for k = 1:nv

% Identify sample location

input(k,:) = u(k) + u_loc*s(k);

% Get response values

xx = u;

for kk = 1:m
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xx(k) = input(k,kk);

if isequal(k,1) && isequal(xx,u) %% Avoid re-evaluating mean value

output(k,kk) = findresponse(xx);

gg = output(k,kk);

elseif *isequal(k,1) && isequal(xx,u)

output(k,kk) = gg;

else

output(k,kk) = findresponse(xx);

end

end

end

%=================== Define Performance Function =======================%

function response = findresponse(xx)

if isvector(xx) == 1

response = 0.75*exp(-0.25*(9*xx(1)-2)^2-0.25*(9*xx(2)-2)^2)....

+0.75*exp(-(9*xx(1)+1)^2/49-(9*xx(2)+1)/10)....

+0.50*exp(-0.25*(9*xx(1)-7)^2-0.25*(9*xx(2)-3)^2)....

-0.20*exp(-(9*xx(1)-4)^2-(9*xx(2)-7)^2) - 0.6;

else

response = 0.75*exp(-0.25*(9*xx(1,:)-2).^2-0.25*(9*xx(2,:)-2).

^2)....

+0.75*exp(-(9*xx(1,:)+1).^2/49-(9*xx(2,:)+1)/10)....

+0.50*exp(-0.25*(9*xx(1,:)-7).^2-0.25*(9*xx(2,:)-3).^2)....

-0.20*exp(-(9*xx(1,:)-4).^2-(9*xx(2,:)-7).^2) - 0.6;

end
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Chapter 6
Time-Dependent Reliability Analysis
in Design

Engineering analysis and design methods have advanced to enable improvements in
the reliability of engineered systems by considering various sources of uncertainty
associated with these systems. Because one of the primary concerns in product
design is ensuring a high level of system reliability throughout the product lifecycle,
the ability to deal with the time-dependent probabilistic constraints necessary to carry
out time-dependent reliability analysis in design is of vital importance in practical
engineering design applications. Here, time-dependent reliability is defined as the
probability that the time-dependent probabilistic constraints will be satisfied
throughout the designed lifetime. For example, reliability that considers corrosion
and fatigue is often called time-dependent reliability [1] because both corrosion and
fatigue are time-dependent. In practical applications, time-dependent reliability is
more desirable and provides more sophisticated system performance measures, as
compared to traditional time-independent reliability, because it considers system
performance changes in the time domain throughout the product’s lifecycle. Different
from time-independent reliability analysis, time-dependent reliability analysis
involves limit state functions that change with time; thus, time-dependent reliability
analysis necessitates the availability of a family of instantaneous limit states over the
designed lifetime of the system. It is difficult for existing time-independent proba-
bility analysis approaches to handle the time dependency of the limit state functions;
therefore, it is more challenging to calculate time-dependent reliability and carry out
system design with time-dependent probabilistic constraints, as compared to
time-independent cases.

This chapter introduces methods for time-dependent reliability analysis.
Section 6.1 provides an overview of time-dependent reliability analysis.
Sections 6.2–6.5 introduce four different methods for conducting time-dependent
reliability analysis, namely simulation-based methods, extreme-value based meth-
ods, composite limit state based methods, and upcrossing rate based methods,
respectively. The nested extreme response surface (NERS) approach—an extreme-
value based method for time-dependent reliability analysis—is introduced in
Sect. 6.3. The composite limit state methods and outcrossing rate methods are also
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briefly discussed, and related references are provided for further study. Section 6.6
provides concluding thoughts. Exercise problems are provided in Sect. 6.7.

6.1 Overview of Time-Dependent Reliability Analysis

For static time-independent reliability analysis, the limit state function G(X) is
generally used, where the vector X represents random input variables with a joint
probability density function (PDF) fX(x). The probability of failure can be defined
based on the limit state function as

Pf ¼ PðGðXÞ[ 0Þ ¼
Z

� � �
Z

GðXÞ[ 0

fXðxÞdx ð6:1Þ

When time-dependent characteristics are taken into account in reliability analysis,
the system response in general can be accordingly described by a random process S
(X, t), which not only depends on the random input variables X but also is a
function of time t. In this way, the time-dependent limit state can be described as

GðX; tÞ ¼ SðX; tÞ � S0 ð6:2Þ

where S0 represents the marginal value. For example, for a roller clutch, the per-
formance function S(X, t) could be defined as the hoop stress generated in the clutch
operation, while the limit state function G(X, t) can be defined accordingly as the
difference between the threshold value of the hoop stress R and S(X, t). By setting
G(X, t) � 0, we constrain the hoop stress generated in the clutch operation from
going beyond the threshold. If tl is the lifetime of interest, the probability of failure
within the lifetime [0, tl] can be described based on the stress strength reliability
model as

Pf 0; tlð Þ ¼ P 9t 2 0; tl½ �;G X; tð Þ[ 0ð Þ ð6:3Þ

It is very difficult to evaluate Pf(0, tl), as it requires numerical evaluation of
a multidimensional integration of a random process over time. In the literature,
different methods have been developed to deal with this challenge, including both
simulation-based methods and analytical approaches. Similar to time-independent
reliability analysis, Monte Carlo simulation (MCS) can be employed to estimate the
time-dependent reliability. However, MCS suffers from prohibitively high costs, as
a large number of sample points must be evaluated over time. Therefore, the MCS
method may not feasibly be used in practical engineering applications. To address
this challenge, two basic categories of approaches have been developed in the
literature for time-dependent reliability analysis—extreme performance based
approaches [2–4] and first-passage based approaches [5–9]. The extreme
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performance approaches use the extreme value of the performance function under
consideration, and a failure occurs if the extreme value over a designed time
interval is greater than a given threshold value. The first-passage approaches con-
sider the first time instant when the performance of interest exceeds or falls below a
threshold; this requires calculation of the “outcrossing rate” as the likelihood that
the performance exceeds or falls below the threshold. In recent literature, a com-
posite limit state (CLS) based method has also been developed to compute the
cumulative probability of failure based on the Monte Carlo simulation (MCS). This
approach constructs a global CLS to transform time-dependent reliability analysis
into a time-independent analysis by combining all instantaneous limit states of each
time interval in a series. In the rest of this chapter, these different methods will be
introduced.

6.2 Simulation-Based Methods for Time-Dependent
Reliability Analysis

In this section, the Monte Carlo simulation (MCS) method for time-dependent
reliability analysis is first introduced; an example is then used to demonstrate the
concept.

6.2.1 Procedure for Time-Dependent Reliability Analysis
Using MCS

MCS is a computational algorithm that relies on repeated random sampling to
obtain numerical results. To conduct time-dependent reliability analysis using the
MCS method, the following general steps can be followed:

Step 1 Random sample point generation
In this step, a large number of random input samples are generated by
drawing from probability distributions based on the randomness of
system inputs. For time-dependent reliability analysis, random sample
points are generated for random variables and parameters in a manner
like that used to generate sample points for time-independent reliability
analysis.

Step 2 System performance evaluation
In this step, the system performance function is evaluated over time at
each Monte Carlo sample point, as generated in step 1. For
time-dependent reliability analysis, the limit state function is dependent
on time; thus, the evaluation of the limit state function at a given sample
point x* will generally provide a one-dimensional function G(x*, t).
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Step 3 Sample point classification
In this step, each Monte Carlo sample point is classified into one of two
categories: the failure category or the safe category, respectively, based
upon the system performance evaluation results. For time-dependent
reliability analysis, for a given sample point x*, if the limit state function
G(x*, t) is larger than zero at any time t within [0, tl], x* will be
classified into the failure category; otherwise, x* will be classified into
the safe category.

Step 4 Reliability Estimation
In this step, the reliability is estimated based on the results of the sample
point classification in step 3. For time-dependent reliability analysis, the
reliability value is estimated based on the results of sample point clas-
sification considering the time-dependent limit state function. The reli-
ability value is the ratio of the total number of sample points in the safe
category over the total number of MCS samples.

Figure 6.1 shows the procedure for time-dependent reliability analysis using the
MCS method. A mathematical example is employed to demonstrate time-dependent
reliability analysis using the MCS approach.

6.2.2 Example of Time-Dependent Reliability Analysis
Using MCS

The time-dependent limit state function G(X, t) is given by

G X; tð Þ ¼ 20� X2
1X2 þ 5X1t � X2 þ 1ð Þt2 ð6:4Þ

where t represents the time variable that varies within [0, 5], and X1 and X2 are
normally distributed random variables: X1*N(3.5, 0.32) and X2*N(3.5, 0.32).
The time-dependent probability of failure, P(G(X, t)>0), can then be calculated as
detailed below.

Following the procedure shown in Fig. 6.1, the following steps can be used to
estimate the time-dependent reliability of this example using the MCS method. We
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Fig. 6.1 Procedure for time-dependent reliability analysis using the MCS method
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first generate random sample points of X1 and X2 by drawing samples from the
probability density functions (PDFs). Here, a total number of 10,000 samples are
generated for X1 and X2, respectively. Figure 6.2 shows the random sample points
generated for X1 and X2.

The limit sate function G(X, t), as shown in Eq. (6.4), is then evaluated at the
random sample points generated in Step 1. As G(X, t) is time-dependent, evaluation
of the limit state function at a given sample point x* will generally provide a
one-dimensional function G(x*, t).

Figure 6.3a shows the evaluation of G(X, t) over time at several sample points,
including the point x = [3.5, 3.5].

Considering the failure event as defined in Eq. (6.3), a sample point can be
classified as a failure sample point if the limit state function G(X, t) goes beyond
zero with the specified time interval. As shown in Fig. 6.3b, the limit state function
has been evaluated at four different sample points over time. In the figure, the two
read curves indicate two failure sample points; whereas, the two blue curves cor-
respond to two safe samples. Following the classification procedure shown in
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sample points (b)
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Fig. 6.1, all Monte Carlo samples can be accordingly classified into either failure
samples or safe samples, as seen in the classification results shown in Fig. 6.4.

Based on the classification of the sample points, 81.60% of sample points are
classified to be safe within the time interval [0, 5]. Thus, based on the MCS
method, the time-dependent reliability is estimated as 81.60%.

6.3 Extreme Value-Based Methods

This section presents the details about one of the extreme value-based methods for
time-dependent reliability analysis, namely, the nested extreme response surface
(NERS) approach [10–13]. Section 6.3.1 introduces the concept of the nested time
prediction model (NTPM). Section 6.3.2 details how the NERS approach can be
used to efficiently construct the NTPM. Amathematic example follows in Sect. 6.3.3.

6.3.1 Concept of a Nested Time Prediction Model

For a system of interest, the performance function S(X, t), as shown in Eq. (6.2), may
change over time due to time-dependent loading conditions and/or component dete-
rioration. Figure 6.5 shows the random realizations of two different types of system
responses, where the solid and dashed lines represent monotonically and
non-monotonically increasing performance, respectively. If S(x, t) increases or
decreases monotonically over time, the extreme response will generally occur at the
time interval boundary, where the probability of failure will also approach its maxi-
mum value. For this type of time-dependent reliability constraint, the reliability
analysis needs to be carried out only at the time interval boundary, and the optimum

Fig. 6.4 Classification of
random sample points based
on the evaluation of system
performance functions
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design derived from the reliability-based design optimization (RBDO) can guarantee
the reliability requirements being satisfied over the entire time domain of interest.
However, the situation is more complicated when the system response S(X, t) is a
non-monotonic function, as shown in Fig. 6.5. In this case, it is critical that the
reliability analysis is carried out at the instantaneous time when the extreme response
of the performance function is obtained.

The time that leads to the extreme response of the system performance function
varies with different designs x; thus, a response surface of the time with respect to
system design variables can be determined as

T ¼ f ðXÞ: max
t

Sðx; tÞ; 8x 2 X
n o

: ð6:5Þ

For example, take a time-dependent limit state function G(X, t) = 20 − X1
2X2 +

5X1t − (X2 + 1)t2. For any given design x: {x1 ε [0, 10], x2 ε [0, 10]}, there is an
instantaneous time t: {t ε [0, 25]} that maximizes G(x, t). To find out this corre-
spondence, we let the derivative of G with respect to t equal zero and obtain the
functional relationship between t and x that maximizes the G(x, t) as t = 5x1/(2x2 +
2). Figure 6.6 shows this functional relationship, where x1 and x2 are two design
variables and the z-axis represents time t. As shown, the extreme response of time
varies with design variables x1 and x2. For example, for a particular realization of
system design, x1 = 4, x2 = 1, the system approaches the maximum response at time
t = 5; while for another particular realization of system design, where x1 = 5, x2 = 0,
the system reaches its maximum response at time t = 12.5. The response surface of
the time T here is defined as the nested time prediction model in the NERS approach.
The inputs of the NTPM are design variables and parameters of interest, which can
be either random or deterministic; whereas, the output is the time when the system
response approaches its extreme value. With the NTPM, the time-dependent relia-
bility analysis problem can be converted to a time-independent one, and thus the
existing advanced reliability analysis approach, such as the first-order reliability
method (FORM), the second-order reliability method (SORM), or dimension-
reduction methods [14–16], can be conveniently used. In design optimization
problems with time-dependent probabilistic constraints, the NTPM can be com-
pletely nested in the design process to convert the time-dependent reliability analysis

Monotonic
Non-Monotonic

Fig. 6.5 Examples of
time-dependent performance
functions
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into a time-independent one by estimating the extreme time responses for any given
system design.

Although the NTPM facilitates time-dependent reliability analysis, it can be very
challenging to efficiently develop a high-fidelity time-prediction model. First,
analytical forms of time-dependent limit states are usually not available in practical
design applications; consequently, NTPM must be developed based on limited
samples. Second, because the samples for developing NTPM require extreme time
responses over the design space, it is of vital importance that these responses be
efficiently extracted to make the design process computationally affordable. Third,
NTPM must be adaptive in performing two different roles: making predictions of
extreme time responses for reliability analysis, and including extra sample points to
improve the model itself at necessary regions during the iterative design process.
The following section presents the NERS methodology, which addresses the three
aforementioned challenges.

6.3.2 The NERS Methodology

In this subsection, we introduce one of the extreme value-based methods that can be
used to tackle time-dependent reliability analysis and design problems, namely the
nested extreme response surface (NERS) approach. The key to this approach is to
effectively build the NTPM in the design space of interest, which can then be used
to predict the time when the system response will approach its extreme value [10–
13]. The NERS methodology is comprised of three major techniques within three
consecutive steps: (1) efficient global optimization (EGO) for extreme time
response identification, (2) construction of a kriging-based NTPM, and (3) adaptive
time response prediction and model maturation. The first step, EGO, is employed to

Fig. 6.6 The extreme response surface of time
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efficiently extract a certain amount of extreme time response samples, which are
then used for the development of NTPM in the second step. Once the kriging-based
NTPM for extreme time responses is established, adaptive response prediction and
model maturation mechanisms are used to assure the prediction accuracy and
efficiency by autonomously enrolling new sample points when needed during the
analysis process. The NERS methodology is outlined in the flowchart shown in
Fig. 6.7, and the three aforementioned key techniques are explained in detail in the
remainder of this section.

A. Efficient Global Optimization for Extreme Time Response Identification

For reliability analysis with time-dependent system responses, it is critical to
efficiently compute the extreme responses of the limit state function and effectively
locate the corresponding time when the system response approaches its extreme
value. For a given system design, the response of the limit state function is
time-dependent and could be either a monotonic or non-monotonic
one-dimensional function with respect to time. Here, the Efficient Global
Optimization (EGO) technique [17] can be employed to efficiently locate the
extreme system response and the corresponding time when the extreme response is
approached, mainly because it is capable of searching for the global optimum when
dealing with a non-monotonic limit state, while at the same time assuring excellent
computational efficiency. In this subsection, we focus on introducing the applica-
tion of the EGO technique for extreme time response identification. Discussion of
the EGO technique itself is omitted, because more detailed information about this
technique can be obtained from references [18–20].

Initial Design Samples

STEP I: Extreme Time    
Response Identification 

Using EGO

STEP II: Developing the 
Nested Time Prediction 

Model (NTPM)

STEP III: Adaptive 
Response Prediction and 
Model Maturation and 

(ARPMM)

Time-dependent 
Reliability Analysis

Time-independent 
Reliability Analysis

NTPM is accurate?

Add
New  

Design 
Samples

Time-dependent 
Reliability Results

NoYes

Fig. 6.7 The procedure of time-dependent reliability analysis using the NERS approach
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In order to find the global optimum time that leads to the extreme response of the
limit state function, the EGO technique generates a one-dimensional stochastic
process model based on existing sample responses over time. Stochastic process
models have been widely used for function approximation; more information on
these models can be found in the references [21, 22]. In this study, the response of
the limit state function over time for a particular design point is expressed by a
one-dimensional stochastic process model in EGO with a constant global mean as

FðtÞ ¼ lþ eðtÞ ð6:6Þ

where l is the global model representing the function mean, and e(t) is a stochastic
process with mean zero and variance re

2. The covariance between e(t) at two
different points ti and tj is defined as Cov(e(ti), e(tj)) = re

2Rc(ti, tj), in which the
correlation function is given by

Rc ti; tj
� � ¼ exp �a ti � tj

�� ��b� �
ð6:7Þ

where a and b are unknown model hyperparameters. Based on a set of initial
samples, F(t1), F(t2),…, F(tk), an initial stochastic process model of F(t) can always
be constructed by maximizing the likelihood function

LF ¼ 1

ð2pÞn=2ðr2Þ Rcj j1=2
exp �ðF � lÞ0R�1

c ðY � lÞ
2r2

� �
ð6:8Þ

where F = (F(t1), F(t2), …, F(tk)) denote the sample responses of the limit state
function, and Rc is the covariance matrix whose (i, j) is given by Eq. (6.7). After
developing the initial one-dimensional stochastic process model, EGO updates this
model iteratively by continuously searching for the most useful sample point that
ensures a maximum improvement for the accuracy until the convergence criteria is
satisfied. To update the stochastic process model, the EGO employs the expected
improvement [23] metric to quantify the potential contribution of a new sample
point to the existing response surface; the sample point that gives the largest
expected improvement value is chosen at the next iteration. In what follows, the
expected improvement metric will be introduced briefly and the procedure of
employing the EGO technique for extreme time response identification will be
summarized. A mathematic example is employed to demonstrate the extreme time
response identification using the EGO technique.

Let us consider a continuous function F(t) over time t that represents a limit state
function over time for a given system design point in the design space. Here, we
employ an expected improvement metric to determine the global minimum of F(t).
Due to limited samples of F(t), the initial stochastic process model may introduce
large model uncertainties, and consequently, the function approximation, denoted
by f(t), could be substantially biased compared with the real function F(t). Due to
the uncertainty involved in this model, in EGO, the function approximation of f(t) at
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time t is treated as a normal random variable whose mean and standard deviation
are computed by an approximated response Fr(t), and its standard error e(t) is
determined from the stochastic process model. With these notations, the improve-
ment at time t can be defined as

IðtÞ ¼ maxðFmin � f ðtÞ; 0Þ ð6:9Þ

where Fmin indicates the approximated global minimum value at the current EGO
iteration. By integrating the expectation of the right part of Eq. (6.8), the expected
improvement at any given time t can be presented as [17]

E½IðtÞ� ¼ E½maxðFmin � f ; 0Þ�

¼ Fmin � FrðtÞð ÞU Fmin � FrðtÞ
eðtÞ

� �
þ eðtÞ/ Fmin � FrðtÞ

eðtÞ
� � ð6:10Þ

where U(�) and /(�) are the cumulative distribution function and the probability
density function for the standard Gaussian distribution, respectively. A larger
expected improvement at time t means a greater probability of achieving a better
global minimum approximation. Thus, a new sample should be evaluated at the
particular time ti, where the maximum expected improvement value is obtained to
update the stochastic process model. With the updated model, a new global mini-
mum approximation for F(t) can be obtained. The same process can be repeated
iteratively by evaluating a new sample at time ti, which provides the maximum
expected improvement value and updates the stochastic process model for the new
global minimum approximation until the maximum expected improvement is small
enough, and less than a critical value Ic (in this study, Ic = |Fmin|%, which is 1% of
the absolute value of the current best global minimum approximation). The pro-
cedure for employing the EGO technique for extreme time response identification
can be briefly summarized in five steps, as shown in Table 6.1.

A mathematical example is employed here to demonstrate the accuracy and
efficacy of the EGO for extraction of the extreme responses of the limit state

Table 6.1 Procedure for EGO for extreme time response identification

Steps Procedure

Step 1: Identify a set of initial sample times ti and evaluate the responses of the limited state
function F(ti) for (i = 1, 2, …, k).

Step 2: Develop a stochastic process model for F(t) with existing sample points, and
approximate the global minimum, Fmin, and the time tm.

Step 3: Determine time ti with maximum expected improvements, E[I(t)].

Step 4: Compare max{E[I(t)]} with Ic: If max{E[I(t)]} <= Ic, STOP and report tm and Fmin;
Else, go to Step 5.

Step 5: Evaluate the response at ti, and repeat Steps 2–4.
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function. Assume that a time-dependent limit state function for a particular point of
the design space is provided by

FðtÞ ¼ 1:042t5 � 13:25t4 þ 59:78t3 � 112:75t2 þ 75:17t ð6:11Þ

The objective here is to identify the extreme response of F(t) (the global minimum)
and pinpoint the corresponding time t within the time interval [1, 5]. Figure 6.8
shows the limit state function with respect to time, in which the global minimum
occurs at time t = 4.5021 with F(4.5021) = −3.5152; whereas, the local minimum is
located at t = 1.9199 with F(1.9199) = 0.8472.

Following the procedures outlined in Table 6.1, the performance function is first
evaluated at initial samples t1*t5: [1, 2, 3, 4, 5], and the obtained limit state
function values are F(t1)*F(t5): [10.992, 0.924, 7.776, 1.607, 9.600]. With these
initial sample points, a one-dimensional stochastic process model can be built to
approximate the limit state function F(t), and the global optimum can be approx-
imated as F(2) = 0.924. As indicated by Step 3 in Table 6.1, the expected
improvement is calculated based on Eq. (6.10) throughout the time interval [1, 5],
and the maximum expected improvement can be obtained as max{E[I(ti)]} =
5.2655, where ti = 2.4572. Because max{E[I(ti)]} > Ic, where Ic = 0.00001 here, the
limit state function will be evaluated at the new sample point ti = 2.4572, which
results in F(2.4572) = 3.6114. Figure 6.9a shows the above-discussed first EGO
iteration for the extreme response identification, in which the top figure represents
the current realization of the stochastic process model for F(t), and the bottom one
indicates the curve of the expected improvements over t. In the next iteration, by
adding a new sample point to the existing ones at t1*t5, a new stochastic process
model with better accuracy can be built for the approximation of F(t) over time and
the identification of the extreme response of the limit state function (the global
minimum).

Fig. 6.8 Time-dependent limit state of the mathematical example
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The procedures shown in Table 6.1 can be repeated until the convergence cri-
terion is satisfied and the extreme response of the limit state function is identified
with a desired accuracy level. Figure 6.9b shows the sixth EGO iteration for the
extreme response identification. After a total of eight iterations, the expected
improvement of including a new sample point for the response surface is clearly
small enough and the convergence criterion is satisfied. Table 6.2 details all the
EGO iterations for the extreme response identification of this mathematical
example. As shown in this table, the accuracy of the estimated global minimum is
improved after involving a new sample during the EGO process; thus, the minimum

(a)

(b)

Fig. 6.9 a First EGO iteration for extreme response identification; b The eighth EGO iteration for
extreme response identification
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Fmin= −3.5152 in iteration 8 is more accurate than the result Fmin= −3.4991 in
iteration 7.

B. Nested Time Prediction Model

This section presents the procedure for developing a nested time prediction model
using kriging. After repeating the EGO process outlined in subsection A for different
system sample points in the design space, a set of data can be obtained, including
initial sample points in the design space X, and the corresponding times T when the
system responses approach their extreme values at these sample points. To build the
NTPM using the NERS approach, design points are randomly generated in the
design space based on the random properties of the design variables. To balance the
accuracy and efficiency of the NTPM, initially 10 * (n − 1) samples are suggested to
build the kriging-based NTPM for n-dimensional problems (n > 1). The accuracy
and efficiency of NTPM is controlled by an adaptive response prediction and model
maturation (ARPMM) mechanism, which will be detailed in the next subsection.
The objective here is to develop a prediction model to estimate the time that leads to
the extreme performances of the limit state function for any given system design in
the design space. For this purpose, the kriging technique is employed, and a kriging
model is constructed based on the sample dataset obtained during the EGO process.
It is noteworthy that different response surface approaches, such as the simple linear
regression model or artificial neural networks [24–26], could be applied here for
development of the NTPM. In this study, kriging is used because it performs well for
modeling nonlinear relationships between the extreme time responses with respect to
system design variables.

Kriging is considered to be powerful and flexible for developing surrogate
models among many widely used metamodeling techniques [20, 27]. One of the
distinctive advantages of kriging is that it can provide not only prediction of
extreme time responses at any design point but it can also define the uncertainties,

Table 6.2 EGO iterative process for extreme response identification

Iteration New sample point t Approximated global
minimum

Max{E[I(t)]} t F(t) tm Fmin

0 – – – 2.0002 0.924

1 5.2655E+00 2.4572 3.6114 2.0479 0.87574

2 2.0957E+00 3.5628 6.9557 2.0369 0.89421

3 2.0469E+00 4.4454 −3.4112 4.3888 −3.6272

4 4.8217E+00 1.5413 2.7243 4.3869 −3.6388

5 8.8917E−01 4.2659 −2.0063 4.4425 −3.4117

6 1.3699E−03 1.7734 1.1202 4.4524 −3.4138

7 4.1988E−05 4.4527 −3.4357 4.4922 −3.4991

8 1.3695E−05 4.4922 −3.5119 4.5021 −3.5152
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such as the mean square errors associated with the prediction. Considering a limit
state function with nd random input variables, a kriging time prediction model can
be developed with n sample points denoted by (xi, ti), in which xi= (xi

1…xi
nd) (i =

1…n) are sample inputs, and ti is the time when the limit state function approaches
the extreme value for a given xi. In the kriging model, time responses are assumed
to be generated from the model:

tðxÞ ¼ HðxÞþ ZðxÞ ð6:12Þ

where H(x), as a polynomial function of x, is the global model that represents the
function mean, and Z(x) is a Gaussian stochastic process with zero mean and
variance r2. As indicated by the studies in references [20, 28], a constant global
mean for H(x) is usually sufficient in most engineering problems; it is also much
less expensive and computationally more convenient. Thus, we use a constant
global mean l for the polynomial term H(x), and accordingly, the kriging time
prediction model in Eq. (6.16) can be expressed as

tðxÞ ¼ lþ ZðxÞ ð6:13Þ

In this kriging model, the covariance function of Z(x) is given by

Cov½ZðxiÞ; ZðxjÞ� ¼ r2Rcðxi; xjÞ ð6:14Þ

where Rc(xi, xj) represents an n � n symmetric correlation matrix, and the (i,
j) entry of this correlation matrix is a function of the spatial distance between two
sample points xi and xj, which is expressed as

Rcðxi; xjÞ ¼ exp �
Xnd
p¼1

apjxpi � xpj jbp
 !

ð6:15Þ

where xi and xj denote two sample points, |�| is the absolute value operator, and ap
and bp are hyperparameters of the kriging model that need to be determined. In this
equation, ap is a positive weight factor related to each design variable, and bp is a
non-negative power factor with a value usually within the range [0, 2] [17, 29].

Note that other than the most commonly used Gaussian functions, other options
are available to define the correlation matrix Rc(xi, xj) and derive the covariance
function S(x) [16, 20, 30–32]. With n number of sample points (xi, ti) for I = 1, …,
n for the kriging time prediction model, the likelihood function of the model
hyperparameters can be given as

Likelihood ¼ � 1
2

n lnð2pÞþ n ln r2 þ ln Rcj j þ 1
2r2

ðt � AlÞTR�1
c ðt � AlÞ

	 

ð6:16Þ
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In this equation, we can solve for the values of l and r2 by maximizing the
likelihood function in closed form as

l ¼ ATR�1
c A

� ��1
ATR�1

c t ð6:17Þ

r2 ¼ ðt � AlÞTR�1
c ðt � AlÞ
n

ð6:18Þ

where A is a matrix of basis functions for the global model. In this study, A is an
n � 1 unit vector since only the constant global mean l is considered for the
polynomial term H(x). Substituting Eqs. (6.17) and (6.18) into Eq. (6.16), the
likelihood function is transformed to a concentrated likelihood function, which
depends only upon the hyperparameters ap and bp for any p within [1, nd]. Then, ap
and bp can be obtained by maximizing the concentrated likelihood function, and
thereafter the correlation matrix Rc can be computed. With the kriging time pre-
diction model, the extreme time response for any given new point x′ can be esti-
mated as

tðx0Þ ¼ lþ rTðx0ÞR�1
c ðt � AlÞ ð6:19Þ

where r(x′) is the correlation vector between x′ and the sampled points x1*xn, in
which the ith element of r is given by ri(x′) = Rc(x′, xi).

C. Adaptive Response Prediction and Model Maturation

Model prediction accuracy is of vital importance when employing the nested
time prediction model for design. Thus, during the design process, a mechanism is
needed for model maturation that will automatically enroll new sample points to
improve the accuracy of the nested time prediction model when the accuracy
condition is not satisfied. This paper develops an adaptive response prediction and
model maturation (ARPMM) mechanism based on the mean square error e(x) of the
current best prediction. Figure 6.10 shows the flowchart of the developed
mechanism.

Before predicting the time response of a new design point x using the latest
update of the NTPM, the ARPMM mechanism can be employed by first calculating
the current mean square error e(x) of the best prediction as

eðxÞ ¼ r2 1� rTR�1rþ ð1� ATR�1rÞ2
ATR�1A

" #
ð6:20Þ

To reduce the numerical error, the relative MSE is suggested as a prediction
performance measure for the NTPM, which is given by
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nðxÞ ¼ eðxÞ
l

ð6:21Þ

Prediction of a time response t′ using the NTPM for a new design point x is
accepted only if the relative error n(x) is less than a user-defined threshold nt. To
balance a smooth design process and a desired prediction accuracy, we suggest a
value of ntwithin the range [10

−3, 10−2]. Once the prediction on this particular design
point x is accepted, the time response t′ of extreme performance is estimated using
Eq. (6.23) and returned to the time-dependent reliability analysis process. If the
relative error is larger than the threshold, then x will be enrolled as a new sample
input, and the EGO process, as discussed in subsection A, will be employed to
extract the true time response when the limit state function approaches its extreme
performance for x. With the new design point x and the true time response for x, the
NTPMwill be updated, as discussed in subsection B. The procedure for the ARPMM
mechanism of NTPM is provided in Table 6.3. Through the developed ARPMM
mechanism, the NTPM can be updated adaptively during the time-dependent reli-
ability analysis process to guarantee accuracy and simultaneously maintain effi-
ciency. Note that the ARPMMmechanism automates the improvement of the kriging
model during the design process; under rare cases, the stability issues induced by
singular matrices may occur when several design points located closely together are
used to seed the kriging model. Thus, we suggest an extra step be included in the
ARPMM process by checking the singularity after adding new sample points for the
prediction accuracy improvement of the kriging model.

New Design Point

Extreme Time    
Response Identification 

Using EGO

Nested Time Prediction 
Model, T(x)

Mean Square Error, e(x), for  
Response Prediction

Time-dependent 
Reliability Analysis

Estimate Time of 
Extreme Response, t(x) Accurate enough?

Add
Current Design Point

Time-dependent 
Reliability

No

Yes

Time-independent 
Reliability Analysis

Fig. 6.10 Flowchart of the ARPMM mechanism
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6.3.3 Example of Reliability Analysis Using NERS

In this section, the same mathematical example as used in Sect. 6.2.2 is employed
to demonstrate time-dependent reliability analysis using the NERS approach. In the
example, the time-dependent limit state function G(X, t) is given by

G X; tð Þ ¼ 20� X2
1X2 þ 3X1t � X2 þ 0:5ð Þt2 ð6:22Þ

where t represents the time variable that varies within [0, 5] and x1 and x2 are
normally distributed random variables: X1 * Normal(5.8, 0.52) and X2 * Normal
(2.2, 0.52). Figure 6.11 shows the failure surface of the instantaneous time-dependent
limit states as it changes with the time interval [0, 6], in which limit state functions at
different time nodes equal zero. As a benchmark solution, we employed Monte Carlo
simulation to calculate the reliability, with an obtained reliability of 0.9626. In the
MCS, first, 100,000 samples were generated for each input variable, and then, the
time variable was discretized evenly into 100 time nodes within the interval [0, 6].
The limit state function was evaluated for all sample points at each time node, and the
reliability was then estimated by counting the number of safe samples accordingly.
A sample point was considered a safe sample if the minimum of the limit state
function values over the 100 time nodes was larger than zero. In what follows, the
reliability analysis for this case study is carried out using the NERS approach.

The NERS approach, which converts the time-dependent reliability analysis to a
time-independent analysis, begins with the development of the NTPM. As shown in
Table 6.4, an initial set of eight design points can be sampled randomly in the
design space, based on the randomness of the design variables X1 and X2. With the
initial set of design points, the EGO technique can be employed for identification of
the extreme responses (maximum) of the limit state and relative times when the
limit state approaches its extreme values. The results are also shown in the last two
columns of Table 6.4. For example, for the design point [3.4134, 3.2655], the limit
state function approaches its extreme response −11.0843 when time t = 1.3574, as

Table 6.3 The procedure of developing the nested time prediction model using ARPMM

Steps Procedure

Step 1: Identify an initial set of design points, X, and extract time responses T when the
limited state function approaches extreme values at X, correspondingly.

Step 2: Develop the nested time prediction model (NTPM) using existing data setD = [X, T].
Step 3: For a new design point x, calculate prediction error, n(x), using the latest NTPM.

Step 4: Compare the prediction error with the error threshold, nt:
• If n(x) < nt, estimate t′(x) at the new point x and return to reliability analysis;
• If n(x) � nt, determine the extreme response at t′ of using EGO, add (x, t′) to D,
then go to Step 2.
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shown in the first row of the table. Using these eight initial sample points, denoted
by (xi, ti) for i = 1, 2, …, 8, by following the procedure discussed in Sect. 6.3.2B, a
kriging-based NTPM can be developed. The unknown parameters of the kriging
model are estimated, and the NTPM is obtained by maximizing the concentrated
likelihood function, as shown in Eq. (6.16). Figure 6.12 shows the developed
NTPM for this case study.

During the reliability analysis process, the ARPMM mechanism is used to
update the NTPM as necessary and predict the time responses for new design
points. For the ARPMM mechanism, the mean square error e(x) is employed as the
decision-making metric. When the NTPM is used to predict the time when the limit
state function approaches its extreme value for the new design point x, if the relative
error n(x), based on e(x), is greater than nt, the ARPMM mechanism will trigger the

Fig. 6.11 Instantaneous limit states for time interval [0, 5]

Table 6.4 Randomly
selected sample points

No. X1 X2 Extreme response Time

1 3.4134 3.2655 −11.0843 1.3574

2 4.5620 3.8518 −49.4041 1.5736

3 3.9249 3.9153 −32.4660 1.3333

4 4.5989 3.5194 −42.5950 1.7177

5 3.6763 3.2851 −16.3647 1.4595

6 2.4852 3.2229 3.8272 1.0030

7 3.2196 3.0563 −5.1216 1.3574

8 3.3746 3.9604 −19.3558 1.1351
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EGO process for identification of the true time response t′ for x. After the EGO
process, the new design point x and the corresponding time response t′ will be
included as a new sample point to D, and the initial NTPM will be updated with this
new point.

After developing the NTPM, the time-dependent reliability analysis can be
converted to a time-independent one. Commonly used reliability analysis tools,
such as the FORM, can be employed for this purpose. By applying the FORM, the
time-independent limit state function is linearized at the most probable point
(MPP), and the reliability index can be calculated in the standard normal space as
the distance from the MPP to the origin, while the HL-RF algorithm [33] can be
used for the MPP search in FORM. As the FORM linearizes the limit state function
for the reliability calculation, error will be introduced due to this linearization. Thus,
MCS is also employed with NTPM to study the reliability analysis errors intro-
duced by FORM and by NTPM. Table 6.5 shows the results of reliability analysis
with the NERS approach.

Fig. 6.12 Initial NTPM for
the mathematical example

Table 6.5 Reliability analysis results using the NERS approach

Time interval True reliability NERS with FORM NERS with MCS

Reliability Error
(%)

Reliability Error
(%)

[0, 6] 0.8563 0.8621 0.6816 0.8603 0.4695

[0, 5] 0.8563 0.8621 0.6816 0.8605 0.4998

[0, 4] 0.8584 0.8633 0.5763 0.8631 0.5452

[0, 3] 0.8788 0.8842 0.6181 0.8831 0.4870

[0, 2] 0.9327 0.9367 0.4261 0.9341 0.1469

[0, 1] 0.9832 0.9850 0.1810 0.9836 0.0437

0 0.9989 0.9991 0.0211 0.9989 0.0000
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6.4 Composite Limit State Methods

The composite limit state (CLS) approach [34] discretizes the continuous time
variable into a finite number of time intervals and consequently time is treated as a
constant value within each time interval. The time-dependent reliability analysis can
then be converted into reliability analysis of a serially connected system where the
limit state function defined for each time interval is treated as a system component.

6.4.1 Introduction to the Composite Limit State Method

Let time tl denote the designed life of interest, which is discretized into N time
intervals using a fixed time step Dt. Let En = {x|G(x, tn) � 0} denote the
instantaneous failure at the discrete time tn, and let [ En for n = 1, 2, …, be the
composite limit state defined as the union event of all instantaneous failure events
defined for each discretized time interval. The cumulative probability of failure can
then be approximated by

Pf ð0; tlÞ ¼ P
[N
n¼0

GðX; tnÞ\0; tn 2 0; tl½ �
 !

; ð6:23Þ

where failure occurs if G(X, tn) < 0 for any n = 1, 2, …, N. Although the CLS
approach converts the time-dependent reliability analysis to a time-independent
one, determining the CLS itself is difficult and computationally expensive because
it requires the comparison of all instantaneous failure events for each design point.
The discretization of time will greatly simplify the time-dependent reliability
analysis because it converts the time-dependent analysis problem into several
time-independent reliability problems. However, despite the several-fold increase in
computational cost, this method also raises the error when the time-dependent limit
state is highly nonlinear within different time intervals.

6.4.2 Example of Time-Dependent Reliability Analysis
Using the CLS Method

In this section, the same mathematical example as used in Sect. 6.2.2 is employed
to demonstrate time-dependent reliability analysis using the CLS approach. By
using the CLS method, the time within [0, 5] is discretized into 5 intervals, and
within each time interval, the performance function is considered time-independent,
as shown in Fig. 6.13.
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After discretizing the time variable into time intervals, the time-dependent per-
formance function can be accordingly converted into time-independent ones in
different time intervals. With the time-independent performance function in each
time interval, reliability analysis can be carried out using existing reliability analysis
methods, such as MCS or FORM.

In this example, the MCS is used to find out the reliability at each time interval,
in order to compute the time-dependent reliability estimates. Table 6.6 lists the
reliability values estimated for these time intervals. The time-dependent reliability
can be accordingly approximated based upon the reliability at each time interval as:

R ¼
Yt
i¼1

Ri ¼ 0:7413

6.4.3 Further Development of CLS-Based Methods

As compared to the time-dependent reliability estimates shown in the results
obtained in Sects. 6.2.2 and 6.3.3, the CLS method produces errors for
time-dependent reliability estimates. The error is dependent on the interval length
determined while discretizing the time variable, as well as the reliability analysis
method used for the time-independent reliability estimation. To improve the effi-
ciency of the composite limit state method, a niching genetic algorithm with lazy
learning metamodeling has been developed. Although a niching genetic algorithm
with lazy learning metamodeling was performed to build the CLS, the computa-
tional cost was still a large burden, as demonstrated by reported case studies [34].

t=0 t=1 t=2 t=3 t=4 t=5

G(x, 0) G(x, 1) G(x, 2) G(x, 3) G(x, 4)

Fig. 6.13 Descretization of the time variables into time intervals

Table 6.6 Reliability values estimated in different time intervals

Time Interval [0, 1] [1, 2] [2, 3] [3, 4] [4, 5]

Reliability 0.9996 0.9382 0.8308 0.9532 0.9982
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6.5 Outcrossing Rate Based Methods

Outcrossing rate based methods relate the probability of failure to the mean number
of outcrossings of the time-dependent limit state function through the limit state
surface. Outcrossing rate based methods generally perform time-dependent relia-
bility analysis through estimation when the outcrossings may be considered inde-
pendent and Poisson distributed, or by estimating an upper bound in general cases.
In the following section, the outcrossing rate is introduced and time-dependent
reliability analysis that employs the outcrossing rate is presented. A case study is
used to demonstrate the method.

6.5.1 Introduction to the Outcrossing Rate

The approach based on the outcrossing rate calculates the probability of failure
based on the expected mean number of outcrossings of the random process through
the defined failure surface [35]. The instantaneous outcrossing rate at time s is then
defined as

vþ ðsÞ ¼ lim
Ds!0;Ds[ 0

P½G X; sð Þ[ 0\G X; sþDsð Þ\0�
Ds

ð6:24Þ

Let N(0, tl) denote the number of outcrossings of zero value from the safe
domain to the failure domain within [0, tl]. Basic probability theory shows that
N(0, tl) follows a binomial distribution. When the probability of outcrossing is very
small, it is equal to the mean number of outcrossings per unit time (the outcrossing
rate). Because the binomial distribution converges to the Poisson distribution when
the time period is sufficiently long or the dependence between crossings is negli-
gible, the outcrossings are assumed to be statistically independent [36]. With this
assumption, the outcrossing rate becomes the first-time crossing rate, or the failure
rate. Then, the probability of failure can be estimated from the upcrossing rate. The
probability of failure defined in Eq. (6.3) also reads as

Pf 0; tlð Þ ¼ Pr fG X; 0ð Þ\0g[ fNð0; tlÞ[ 0gð Þ ð6:25Þ

Equation (6.25) can be interpreted as that failure within time interval [0, tl] that
corresponds either to failure at the initial instant t = 0 or to a later outcrossing of the
limit state surface if the system is in the safe domain at t = 0. It is reported that the
upper bound on Pf(0, tl) is available as [35]

Pf 0; tlð Þ�Pf 0ð ÞþE½N 0; tlð Þ� ð6:26Þ
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where the mean number of outcrossings is computed as

E½N 0; tlð Þ� ¼
Ztl
0

vþ ðtÞdt ð6:27Þ

6.5.2 Computing the Outcrossing Rate

Although the outcrossing rate approach tends to provide a rigorous mathematical
derivation of the time-dependent reliability, it is difficult to evaluate the outcrossing
rate for the general stochastic processes. An analytical outcrossing rate is available
[37] for only special stochastic processes, such as stationary Gaussian processes.
One commonly used method is Rice’s formula [8], which has been used for scalar
differentiable random processes. Rice’s formula has been generalized by Belayev
[38] for vector differentiable processes. Studies have also been conducted with
specialization to differentiable Gaussian processes and for the case of scalar and
vector rectangular wave renewal processes. A large number of methods have
focused on the asymptotic integration approach to calculate the outcrossing rate [8,
9]. In the following section, one method for computing the outcrossing rate, namely
the PHI2 method [39], will be briefly discussed and used in a case study.

For the PHI2 method, the outcrossing rate is computed by considering the
two-component parallel system reliability analysis in Eq. (6.24). It consists of
making two successive analyses using time-independent reliability analysis meth-
ods, such as MCS or FORM. Then, the binormal cumulative distribution function is
evaluated, as first presented by Hagen and Tvedt [35] and then used by Li and Der
Kiureghian [7].

Applying a finite difference-like operation of Eq. (6.24), the outcrossing rate can
be replaced as

vþPHI2ðsÞ ¼
Pr½G X; sð Þ[ 0\G X; sþDsð Þ\0�

Ds
ð6:28Þ

Thus, it is important that an appropriate time increment Ds be selected. Assuming
that FORM is used for time-independent reliability analysis, the following steps
could be followed to carry out time-dependent reliability analysis using the PHI2
method.

• Conduct time-invariant reliability analysis for {G(X, s) � 0} using FORM.
Thereby, the reliability index b(s) is obtained by approximating the limit state
surface by the hyper plane a(s)�u + b(s) = 0 in the standard normal space.

• Similarly, conduct time-invariant reliability analysis for {G(X, s+ Ds)� 0}
using FORM. Thereby, the reliability index b(s + Ds) is obtained by
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approximating the limit state surface by the hyper plane a(s + Ds)�u +
b(s + Ds) = 0 in the standard normal space.

• Denote the correlation between the two events {G(X, s) > 0} and {G(X, s +
Ds) � 0} by

qGðs; sþDsÞ ¼ �aðsÞ � aðsþDsÞ ð6:29Þ

• Compute the probability of a parallel system, leading to

vþPHI2ðsÞ ¼
U2 bðsÞ;�bðsþDsÞ; qGðs; sþDsÞ½ �

Ds
ð6:30Þ

where F2 denotes the binormal cumulative distribution function.
• The time-dependent reliability can then be calculated by applying Eq. (6.29) to

Eqs. (6.26) and (6.27).

6.5.3 Example of Time-Dependent Reliability Analysis
Using the Upcrossing Rate

In this section, the same mathematical example as used in Sects. 6.2.2 and 6.3.3 is
employed to demonstrate time-dependent reliability analysis using the PHI2
method. In the example, a time-dependent limit state function G(X, t) is given by

G X; tð Þ ¼ 20� X2
1X2 þ 5X1t � X2 þ 1ð Þt2

where t represents the time variable that varies within [0, 5]. The random variables
X1 and X2 are normally distributed random variables: X1 * Normal(3.5, 0.322) and
X2 * Normal(3.5, 0.322). While computing the time-dependent reliability of this
example problem using the PHI2 methods, six different time increments have been
used. The results, as compared with the MCS results in Sect. 6.2.2, are summarized
in Table 6.7.

Table 6.7 Reliability analysis results using the PHI2 method

Ds 0.10 0.12 0.14 0.16 0.18 0.20

R(0, 5) 0.8311 0.8309 0.8334 0.8710 0.9209 0.9827

Error (%) 1.85 1.83 2.13 6.74 13.85 20.43
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6.5.4 Further Development of Outcrossing Rate Based
Methods

As one of the outcrossing rate based methods, the PHI2 method enables the use of
classical time-independent reliability methods, such as FORM, for solving the
time-dependent problem. The disadvantages of PHI2 were that only a bound of the
system reliability could be obtained, and error could rise because of the nonlinearity
of limit states due to the use of FORM. Sudret [40] developed a new formula based
on the original PHI2 method to stabilize the step-size effect in calculating the
time-dependent reliability, denoted as the PHI2+ method. Zhang and Du [41] and
Du [42] proposed a mean value first-passage method to perform time-dependent
reliability analysis for the function generator mechanism. In this approach, the
analytical equations were derived for the up-crossing and down-crossing rates first,
and a numerical procedure was then proposed to integrate these two rates in order to
compute the time-dependent reliability. The assumption of this approach was that
the motion error of the mechanism was a non-stationary Gaussian process. Son and
Savage [43] tracked the time-variant limit state in standard normal space to compute
the system reliability. For this approach, time was divided into several intervals, and
the incremental failure probabilities were calculated for all of them. The probability
of failure estimate was then obtained through the summation of all incremental
failure probabilities. This approach simplified time-dependent reliability analysis by
discretizing time into several time intervals and further assuming independency
between these intervals.

6.6 Conclusion

This chapter introduced time-dependent reliability analysis problems and four
different methods to carry out time-dependent reliability analysis in practical
engineering analysis and design applications. Here, time-dependent reliability is
defined as the probability that the time-dependent probabilistic constraints will be
satisfied throughout the designed lifetime. Different from time-independent relia-
bility analysis, the limit state function changes with time; thus, in time-dependent
reliability analysis, a family of instantaneous limit states will be obtained over the
system’s designed life. Due to the difficulty in handling the time dependency of
time-dependent limit states using existing time-independent probability analysis
approaches, it is more challenging to calculate time-dependent reliability and carry
out system design with time-dependent probabilistic constraints, as compared to
time-independent cases.

While introducing methods for time-dependent reliability analysis, our focus has
been on simulation-based methods and one extreme value based method, namely
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the nested extreme response surface (NERS) approach. The principles of composite
limit state based methods and outcrossing rate based methods have been briefly
discussed, with examples to demonstrate the analysis processes.

Exercise Problems

1. Consider a time-dependent limit state function G(X, t), given by

G X; tð Þ ¼ 20� X1X2 þX2
1 t � X2 þ 1ð Þt2

where t represents the time variable that varies within [0, 5], and X1 and
X2 are normally distributed random variables: X1 * Normal(3.5, 0.32) and
X2 * Normal(3.5, 0.32). Calculate the time-dependent probability of failure,
P(G(X, t) � 0). Following the procedure as shown in Fig. 6.1, the following
steps can be used to estimate the time-dependent reliability of this example.

a. Compute the time-dependent reliability using the MCS method.
b. Compute the time-dependent reliability using the NERS method.
c. Compute the time-dependent reliability using the CLS method with 10 time

intervals evenly distributed.
d. Compute the time-dependent reliability using the outcrossing rate method.

2. Consider a time-dependent limit state function G(X, t), given by

G X; tð Þ ¼ 1� X1 þX2t � 10ð Þ2
30

� 0:2t2 þX1t � X2 � 16ð Þ2
120

where t represents the time variable that varies within [0, 5], and X1 and X2 are
normally distributed random variables: X1 * Normal(3.0, 0.52) and X2 *
Normal(3.0, 0.52). Calculate the time-dependent probability of failure, P(G(X, t)
� 0).

a. Compute the time-dependent reliability using the MCS method.
b. Compute the time-dependent reliability using the NERS method.
c. Compute the time-dependent reliability using the CLS method with 10 time

intervals evenly distributed.
d. Compute the time-dependent reliability using the outcrossing rate method.

3. For the two-slider crank mechanism shown in Fig. 6.14, the time-dependent
limit state function can be given by

G R1;R2;R3;R4; hð Þ ¼ Dsdesired � Dsactual
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where

Dsactual ¼ R1 cosðh� h0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 � R2

1 sin
2ðh� h0Þ

q
� R3 cosðh1 þ h0 � h� d0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
4 � R2

3 sin
2ðh1 þ h0 � h� d0Þ

q
Dsdesired ¼ 108 cosðh� h0Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2112 � 1082 sin2ðh� h0Þ

q
� 100 cosðh1 þ h0 � h� d0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2132 � 1002 sin2ðh1 þ h0 � h� d0Þ

q

The random variables and parameters in the performance function are given in
the table below.

Variable Mean Standard deviation Distribution

R1 108 mm 0.05 mm Normal

R2 211 mm 0.2 mm Normal

R3 100 mm 0.05 mm Normal

R4 213 mm 0.2 mm Normal

h0 45° 0 Deterministic

h1 60° 0 Deterministic

d0 10° 0 Deterministic

d1 p rad/s 0 Deterministic

Considering the time variable h within the range of [0, 360°],

a. Compute the time-dependent reliability using the MCS method.
b. Compute the time-dependent reliability using the NERS method.

Fig. 6.14 Two-slider crank
mechanism
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c. Compute the time-dependent reliability using the CLS method with 10 time
intervals evenly distributed.

d. Compute the time-dependent reliability using the outcrossing rate method.
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Chapter 7
Reliability-Based Design Optimization

As mentioned in earlier chapters, many system failures can be traced back to
various difficulties in evaluating and designing complex systems under highly
uncertain manufacturing and operational conditions. Our attempt to address this
challenge continues with the discussion of reliability-based design optimization
(RBDO). RBDO is a probabilistic approach to engineering system design that
accounts for the stochastic nature of engineered systems. Our discussion of RBDO
will cover the problem statement and formulation of RBDO as well as several
probabilistic design approaches for RBDO.

7.1 Problem Statement and Formulation

It has been widely recognized that engineering design should account for the
stochastic nature of design variables and parameters in engineered systems.
Reliability-based design optimization (RBDO) integrates the techniques of relia-
bility analysis and design optimization and offers probabilistic approaches to
engineering design [1–11]. RBDO attempts to find the optimum design that min-
imizes a cost and satisfies an allocated reliability target with respect to system
performance function(s), while accounting for various sources of uncertainty (e.g.,
material properties, geometric tolerances, and loading conditions). In general, a
RBDO problem for an engineered system can be formulated as follows:

Minimize f dð Þ
Subject to R ¼ Pr Gj X;H; dð Þ� 0

� ��U btð Þ ¼ Rt; j ¼ 1; . . .;Nc

dLi � di � dUi ; i ¼ 1; . . .;Nd

ð7:1Þ

where the objective function is often the cost (e.g. price, volume, and mass) of the
system, the random design vector X = (X1, …, XNd)

T and the random parameter
vector H = (h1, …, hNr)

T, Nd and Nr are the number of design and parameter
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variables, respectively, d = (d1, …, dNd)
T = l(X) is the mean design vector (or the

design variable set), R is the reliability level of a given system design d, Gj is the
performance function of the jth design constraint, for j = 1, …, Nc, Nc is the
number of constraints, Ф is the cumulative distribution function of the standard
normal distribution, Rt is the target reliability level, which corresponds to a target
reliability index bt, and di

L and di
U are, respectively, the lower and upper bounds

on di, for i = 1, …, Nd. The concept of RBDO and its comparison to deterministic
design optimization (DDO) is illustrated with a two-dimensional design example
in Fig. 7.1. In this example, the engineered system under design is the lower
control arm of an army ground vehicle. The control arm serves as a connection
between the wheels and the main body of the vehicle. The majority of dynamic
loading in the suspension system is transmitted through the control arm, making it
susceptible to fatigue failure. Here, a computer simulation model is built to predict
the fatigue lives of the nodes on the surface of the control arm, and
simulation-based design is used to optimize the thicknesses of two components, X1

and X2, with an aim to minimize the design cost and satisfy two fatigue design
constraints.

The design constraints are defined in terms of the fatigue lives at two hotspots,
and are graphically represented as two failure surfaces, G1(X1, X2) = 0 and G2(X1,
X2) = 0, that separate the safe regions from the failure regions. For example, at any
design point below the failure surface G1 = 0, the fatigue life at the 1st hotspot is
longer than the specification limit (i.e., G1 < 0) and at any point above the surface,
the fatigue life is shorter than the limit (i.e., G1 > 0). Thus, on or below the surface
is the safe region for the 1st constraint (i.e., G1 � 0) and above the surface is the
failure region (i.e., G1 > 0). Similarly, on or to the left of the failure surface G2 = 0
is the safe region for the 2nd design constraint (i.e., G2 � 0) and to the right is the
failure region (i.e., G2 > 0). Therefore, any design point in the joint safe region is
safe with respect to both constraints (i.e., G1 � 0 and G2 � 0). This joint region is
treated as the system safe (or feasible) region in this design example. The concentric

Fig. 7.1 Schematic of RBDO and its comparison with DDO in a two-dimensional design space
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ellipses centering at either optimum design point l(X) represent the contours of the
joint PDF of the two random variables X1 and X2. The small dots that scatter around
the optimum design point are the design realizations that are randomly generated
based on the joint PDF. Two important observations can be made from the figure:

• Starting with an initial design in the safe region, DDO and RBDO both attempt
to find an optimum design solution that minimizes the objective function and
satisfies the design constraints. In this case, the objective function decreases
along the upper-right direction in the design space, i.e., the farther towards the
upper right that the design point is located, the smaller the corresponding
objective. Thus, both design approaches move the design point as far toward the
upper-right as possible while keeping the design point in the safe region.

• DDO and RBDO differ intrinsically in the way they deal with the design con-
straints, and this difference leads to two different optimal design solutions (see
the deterministic optimum and probabilistic optimum in Fig. 7.1). DDO con-
siders two deterministic constraints, G1(d1, d2) � 0 and G2(d1, d2) � 0, that do
not account for the uncertainty in the thicknesses of the components, while
RBDO addresses two probabilistic constraints (or fatigue reliabilities), Pr(G1(X1,
X2) � 0) � Rt and Pr(G2(X1, X2) � 0) � Rt, that explicitly account for the
uncertainty. Consequently, DDO pushes the optimum design point onto the
boundary of the safe region, leaving little room for accommodating uncertainty
in the design variables (depicted by red dots around the deterministic optimum
design). By doing so, DDO finds the optimum design point that minimizes the
objective function while satisfying the deterministic constraints. However, many
random design realizations (or actual control arm units) around the deterministic
optimum fall out of the safe region and are deemed unreliable. RBDO pushes
the deterministic optimum design back to the safe region in order to create a
safety margin that accommodates the uncertainty in the design variables. Due to
the safety margin around the probabilistic optimum, this design solution is more
reliable in that most of the random design realizations (blue dots) are located
within the safe region.

In its search for the probabilistic optimum, RBDO must evaluate the feasibility
of probabilistic constraints at a candidate design point through reliability analysis
under uncertainty. Intuitively, RBDO needs to determine whether the safety margin
shown in Fig. 7.1 is large enough to satisfy both probabilistic constraints. During
the past two decades, many attempts have been made to develop efficient strategies
to perform feasibility identification of the probabilistic constraints. These strategies
can be broadly categorized as: double-loop RBDO [1–5], decoupled, sequential
single-loop RBDO (or decoupled RBDO) [6], integrated single-loop RBDO (or
single-loop RBDO) [7–11], and metamodel-based RBDO [12]. The rest of this
chapter introduces these strategies as well as discusses an emerging design topic,
RBDO under time-dependent uncertainty.
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7.2 Double-Loop RBDO

The double-loop RBDO strategies often consist of a nested structure of outer and
inner loops, where the outer loop performs design optimization in the original
design variable space (X-space), and the inner loop performs reliability analysis at a
given design point in the transformed standard normal space (U-space). The two
steps (design optimization and reliability analysis) are iteratively repeated until the
optimum design of an engineered system is found that minimizes the cost and meets
the probabilistic constraints.

The jth probabilistic design constraint in the RBDO formulation shown in
Eq. (7.1) can be expressed in terms of the CDF of the jth performance function as

Pr Gj Xð Þ� 0
� � ¼ FGj 0ð Þ�U btð Þ ð7:2Þ

where FGj �ð Þ is the CDF of Gj, and its value at Gj = 0 is the reliability of the jth
design constraint, expressed as

FGj 0ð Þ ¼
Z0
�1

fGj gj
� �

dgj ¼
Z
XS

j

fXðxÞ dx ð7:3Þ

Here fX(x) is the joint PDF of all the random variables, and XS
j is the safety region

defined as XS
j ¼ x : Gj xð Þ\0

� �
. For notational convenience, we assume the new

random vector consists of both design and parameter vectors, i.e., X = [XT, HT]T.
The evaluation of Eq. (7.3) is essentially reliability analysis under time-independent
uncertainty, which has been extensively discussed in Chap. 5. Among the various
methods for reliability analysis, an approximate probability integration method is
known to provide efficient solutions; this is the first-order reliability method
(FORM). Recall from Sect. 5.3 that reliability analysis in FORM requires a
transformation T of the original random variables X to the standard normal random
variables U. Correspondingly, the performance function G(X) can be mapped from
the original X-space onto the transformed U-space, i.e., G[T(X)] � G(U).

There are in general three double-loop approaches to RBDO, and these
approaches further express the probabilistic constraint in Eq. (7.2) through inverse
transformations or using approximate statistical moments:

RIA:Gr
j ¼ bt � U�1 FGj 0ð Þ� � ¼ bt � bsj � 0 ð7:4Þ

PMA:Gp
j ¼ F�1

Gj
U btð Þð Þ� 0 ð7:5Þ
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AMA:Gm
j ¼ Gj lð Þþ trGj � 0 ð7:6Þ

where bj
s, Gj

p, and Gj
m are respectively the safety reliability index, probabilistic

performance measure; and probabilistic constraint in AMA for the jth design
constraint, t is a target reliability coefficient, and rGj is the second statistical
moment of the performance function Gj. Equation (7.4) uses the reliability index to
describe the probabilistic constraint in Eq. (7.1); this RBDO approach is called
reliability index approach (RIA) [13]. Similarly, Eq. (7.5) replaces the probabilistic
constraint in Eq. (7.1) with the probabilistic performance measure; this approach is
known as performance measure approach (PMA). Because the (often) approximate
first and second statistical moments in Eq. (7.6) are used to describe the proba-
bilistic constraint in the RBDO formulation, this approach is termed the approxi-
mate moment approach (AMA), which originated from the robust design
optimization concept [14, 15]. In what follows, these RBDO approaches will be
introduced, and a focus will be put on RIA and PMA, which are more widely used
in system design than AMA.

7.2.1 RIA in RBDO

In RIA, the probabilistic constraint in Eq. (7.2) is represented by using a reliability
index, and an inverse transformation U−1(�) is used to convert an approximate
reliability to a reliability index. Replacing the probabilistic constraints in Eq. (7.1)
with Eq. (7.4) yields the following reformulation of the RBDO problem

Minimize f dð Þ
Subject to Gr

j ¼ bt � bsj � 0; j ¼ 1; . . .;Nc

dLi � di � dUi ; i ¼ 1; . . .;Nd

ð7:7Þ

The reliability index in the probabilistic constraint in RIA can be evaluated using
FORM, which solves an optimization problem in the transformed U-space (see
Sect. 5.3.1). In FORM, the equality constraint is the failure surface Gj(U) = 0. The
point on the failure surface that has the shortest distance to the origin is called the
most probable point (MPP) uj

�, and the first-order estimate of the reliability index is
defined as the distance between the MPP and origin, bi

s,FORM = ||uj
�||. Because of its

simplicity and efficiency, the HL–RF method described in Sect. 5.3.2 is often
employed to search for the MPP for reliability analysis in RIA.

The MPP search space in RIA is illustrated over a two-dimensional design space
in Fig. 7.2, where the first-order reliability indices in Eq. (7.4) are bj

s,FORM = bj(xj
*;

dk) = ||T(xj
*)||, j = 1, 2, at the kth design iteration. Reliability analysis in RIA is

carried out by determining the minimum distance between the mean design point dk
and the MPP xj

* on the failure surface Gj(X) = 0, j = 1, 2. A comparison of the two
probabilistic constraints in Fig. 7.2 suggests that the first constraint is slightly
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violated, i.e., b1(x1
*; dk) < bt, and the second is largely inactive, i.e., b2(x2

*; dk) > bt.
Consequently, the MPP search space (see the smaller circle) for the first constraint
is smaller than the search space (see the larger circle) for the second constraint. It
has been reported in [1, 3] that the size of the MPP search space in reliability
analysis could affect the efficiency of the MPP search but may not be a crucial
factor. Rather, it was found that PMA with the spherical equality constraint (see
Eq. (7.9) in Sect. 7.2.2) is often easier to solve than RIA with an often complicated
constraint (i.e., Gj(X) = 0). In other words, it is easier to minimize a complex cost
function subject to a simple constraint function (PMA) than to minimize a simple
cost function subject to a complicated constraint function (RIA).

7.2.2 PMA in RBDO

In PMA, the probability constraint in Eq. (7.2) is expressed as a probabilistic
performance measure through an inverse transformation F�1

Gj
�ð Þ. The transformation

converts the probability measure U(bt) for the jth design constraint to a performance
measure Gj

p. Replacing the probabilistic constraints with the corresponding per-
formance measures, the RBDO problem in Eq. (7.1) can be reformulated as

Minimize f dð Þ
Subject to Gp

j ¼ F�1
Gj

U btð Þð Þ� 0; j ¼ 1; . . .;Nc

dLi � di � dUi ; i ¼ 1; . . .;Nd

ð7:8Þ

The evaluation of the probabilistic constraint in PMA requires inverse reliability
analysis, i.e., an inverse problem of reliability analysis. The first-order estimate of
the probabilistic constraint Gj

p can be obtained by solving the following opti-
mization problem with one equality constraint in the U-space, expressed as

X1: manufacturing 
tolerance

X 2
: o

pe
ra

tio
na

l 
fa

ct
or

G1 > 0
Failure 
region

G1 = 0

G2 = 0

Safe region 
G1 ≤ 0 & G2 ≤ 0

G2 > 0
Failure 
region

β1(X;dk) < β t

dk

x1
*

x2
*

β2(X;dk) > β t

Fig. 7.2 Random search
space of RIA in a
two-dimensional design space
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Maximize GjðUÞ
Subject to Uk k ¼ bt

ð7:9Þ

The point on the target reliability surface ||U|| = bt with the maximum value of the
performance function is called the MPP uj

� with the prescribed reliability ||uj
�|| = bt.

Then, the probabilistic performance measure is defined as Gj
p,FORM = G(uj

�).
Unlike RIA, the MPP search in PMA requires only the direction vector uj

�/||uj
�||

given the spherical equality constraint ||U|| = bt. Three numerical methods for PMA
can be used to perform the MPP search in Eq. (7.9): the advanced mean value
(AMV) method [15], the conjugate mean value (CMV) method [3, 17], and the
hybrid mean value (HMV) method [3].

The MPP search space in PMA is illustrated over a two-dimensional design
space in Fig. 7.3, where the first-order performance measures in Eq. (7.5) are
Gj
p,FORM = gj(xj

*), j = 1, 2. Reliability analysis in PMA is carried out by determining
the maximum performance value Gi(xj

*) on the explicit sphere of the target relia-
bility bj(X; dk) = bt, j = 1, 2. Although the two probabilistic constraints in Fig. 7.3
significantly differ in terms of feasibility, they share the same MPP search space
(see the circle in Fig. 7.3). As mentioned, it is often more efficient to perform the
MPP search in PMA with the spherical equality constraint, than to perform RIA
with a complicated constraint (i.e., Gj(X) = 0).

AMV for MPP Search in PMA

The advanced mean value (AMV) method is, in general, well-suited for solving the
optimization problem in Eq. (7.9) due to its simplicity and efficiency [16]. The
first-order AMV method starts the MPP search with the initial MPP estimate
expressed as follows [16]:

u 0ð Þ ¼ btn 0ð Þ ¼ bt
rUG u ¼ 0ð Þ
rUG u ¼ 0ð Þk k ð7:10Þ

X1: manufacturing 
tolerance

X 2
: o

pe
ra

tio
na

l 
fa

ct
or

G1 > 0
Failure 
region

G1 = 0

G2 = 0

Safe region
G1 ≤ 0 & G2 ≤ 0

G2 > 0
Failure 
region

β1(X;dk) = β2(X;dk)
= βt

dk

G1 = g1(x1
*)

x1
*

x2
*

G2 = g2(x2
*)

Fig. 7.3 Random search
space of PMA in a
two-dimensional design space
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To maximize the objective function G(U) in Eq. (7.9), the AMV method first uses
the normalized steepest descent direction n(0) obtained at the origin u = 0 in the U-
space. Note that u = 0 corresponds to the mean values of X. In subsequent steps, the
method iteratively updates the search direction at the current iteration (k + 1) as the
steepest descent direction n(k) at the MPP u(k) obtained at the previous iteration
k. The iterative algorithm works according to the following:

u 1ð Þ ¼ btn 0ð Þ ¼ bt
rUG u 0ð Þ� �
rUG u 0ð Þð Þk k ; u kþ 1ð Þ ¼ btn kð Þ ¼ bt

rUG u kð Þ� �
rUG u kð Þð Þk k ð7:11Þ

It was reported in [3] that the AMV method often behaves well for a convex
performance function, but may exhibit instability and inefficiency for a concave
performance function due to the sole use of the gradient information at the previous
MPP.

CMV for MPP Search in PMA

When dealing with a concave performance function, the AMV method tends to
show slow convergence or even divergence. This numerical difficulty can be
addressed by employing an alternative MPP search method, the conjugate mean
value (CMV) method, which updates the search direction through a combined use
of the steepest descent directions at the three previous iterations [3, 17]. The update
of the search direction at the current iterative (k + 1), k � 2, is performed according
to the following:

u kþ 1ð Þ ¼ bt
n kð Þ þ n k�1ð Þ þ n k�2ð Þ

n kð Þ þ n k�1ð Þ þ n k�2ð Þk k ð7:12Þ

where

n kð Þ ¼ rUG u kð Þ� �
rUG u kð Þð Þk k ð7:13Þ

It can be observed from the above equations that the conjugate steepest descent
direction is a weighted sum of the previous three consecutive steepest descent
directions. This way of updating the search direction improves the rate of con-
vergence and the stability over the AMV method for concave performance
functions.

HMV for MPP Search in PMA

Although the CMV method works well on concave functions, the method is often
less efficient than the AMV method for convex functions. To combine the strengths
of the two methods, the hybrid mean value (HMV) method was developed and
shown to attain both stability and efficiency in the MPP search in PMA [3].
The HMV method first determines the type (i.e., convex or concave) of a
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performance function based on the steepest descent directions at three most recent
iterations, and then adaptively selects one of the two algorithms, AMV or CMV, for
the MPP search. A more detailed description of the method can be found in [3, 18].

7.2.3 AMA in RBDO

The RBDO problem in Eq. (7.1) can be redefined using AMA in Eq. (7.6) as

Minimize f dð Þ
Subject to Gm

j ¼ Gj lð Þþ krGj � 0; j ¼ 1; . . .;Nc

dLi � di � dUi ; i ¼ 1; . . .;Nd

ð7:14Þ

As described in Sect. 5.2, the second statistical moment (standard deviation) of the
performance function can be approximated using the first-order Taylor series
expansion at the mean values lX as

Gj Xð Þ � Gj lXð Þþ
XN
i¼1

@Gj lXð Þ
@Xi

Xi � lXi

� � ð7:15Þ

This approximation may yield inaccurate results if a large number of random
realizations of X are not close to the mean values lX, which occurs if the standard
deviations rX of the random variables X are large. Similarly, a second-order Taylor
series expansion can be used to approximate the standard deviation of the perfor-
mance function [15], but this higher-order approximation may suffer from the same
issue. Alternatively, the stochastic response surface methods (SRSMs) described in
Sect. 5.4 can be used to approximate the second statistical moment, and often yields
better accuracy with comparable efficiency. Unlike RIA and PMA, AMA does not
require reliability analysis, but requires second- or higher-order sensitivity analysis
that may demand a large amount of computational effort.

7.2.4 Comparisons of Different Double-Loop RBDO
Approaches

The numerical behavior of different probabilistic approaches in RBDO has been
studied in earlier works [1, 3]. It has been shown that PMA is better than RIA in
terms of numerical efficiency and stability [1]. More specifically, there are several
numerical advantages of PMA as compared to RIA. First, the convergence of the
reliability analysis using PMA is inherently more robust and efficient than that
using RIA because it is easier to minimize a complicated function subject to a
simple constraint function using PMA than to minimize a simple function subject to
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a complicated constraint function using RIA [1, 3, 17]. Second, the nonlinearity of
the PMA reliability constraint is less dependent on probabilistic model types, such
as normal, lognormal, Weibull, Gumbel, and uniform distributions, than the RIA
reliability constraint [17]. Thus, RIA tends to diverge for distributions other than
the normal distribution, whereas PMA converges well for all types of distributions.

Here, we also list some observations on AMA from an earlier study [18]. First,
without knowing the output probabilistic distribution type, a reliability requirement
is directly assigned by the first two moments of the performance function.
Therefore, a non-normal and skewed output distribution with even a small variation
produces a large error when estimating the reliability. Second, another numerical
error can be generated when estimating the first two moments based on a Taylor
series expansion at the mean values of the random variables. Third, AMA involves
intensive computations because it requires the second- or higher-order sensitivity of
the performance function to evaluate the sensitivity of the probabilistic constraint,
whereas PMA and RIA require only the first-order sensitivity.

Table 7.1 summarizes the comparisons of these double-loop approaches in terms
of several numerical attributes. As shown in Table 7.1, PMA is in general more
desirable than RIA and AMA for RBDO from several numerical perspectives.

Table 7.1 Comparisons of RIA, PMA and AMA for RBDO

Attribute RIA PMA AMA

Application domain Reliability
analysis and
design
optimization

Design
optimization

Reliability analysis
and design
optimization

Required sensitivity
information

First-order
design
sensitivity

First-order
design
sensitivity

Second- or
higher-order design
sensitivity

Ease in setting a target
reliability

Easy to describe
a target
reliability using
bt

Easy to describe
a target
reliability using
bt

Difficult to describe
precisely a target
reliability using t

Capability in handling
non-normal distributions of
random variables

Capable of
dealing with all
distribution
types

Capable of
dealing with all
distribution
types

Not capable of
handling different
distribution types

Accuracy for non-normal and
skewed output distribution

Accurate even
with large
variation

Accurate even
with large
variation

Inaccurate even
with small variation

Efficiency and stability for
high reliability and/or
nonlinear performance
function

Maybe
inefficient and
unstable

Efficient and
stable

Efficient and stable
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7.2.5 Reliability-Based Sensitivity Analysis in RBDO

In the design optimization process, an important component of RBDO is the sen-
sitivity analysis of a reliability (or failure probability) estimate with respect to both
random and deterministic design variables; this is known as reliability-based design
sensitivity analysis. The sensitivity information is useful since it quantifies the effect
of variations in design variables on the reliability of a system design. In what
follows, the reliability-based design sensitivity analysis of the probabilistic con-
straint in RIA and PMA are presented.

Reliability-Based Design Sensitivity Analysis in RIA

In RIA, probabilistic constraints are expressed in terms of the safety reliabil-
ity index. The derivative of safety reliability with respect to design parameter di,
i = 1, …, n can be obtained by using a chain rule as

@bs;FORMj

@di
¼ @ UTU

� �1=2
@di

�����
U¼u�

Gj Uð Þ¼0

¼ @ UTU
� �1=2

@U
� @U
@di

�����
U¼u�

Gj Uð Þ¼0

¼ 1
2

UTU
� ��1=2� 2UT� � � @U

@di

����
U¼u�

GjðUÞ¼0

¼ UT

bs;FORMj

� @U
@di

�����
U¼u�

GjðUÞ¼0

ð7:16Þ

where u�Gj Uð Þ¼0 is the MPP in the U-space that may be estimated by the HL-RF

method (see Sect. 7.2.1). Using the transformation U = T(X; d), Eq. (7.16) can be
rewritten as

@bs;FORMj

@di
¼ TðX; dÞT

bs;FORM

@TðX; dÞ
@di

�����
X¼x�

GjðXÞ¼0

ð7:17Þ

where x�Gj Xð Þ¼0 is the corresponding MPP in the X-space.

Reliability-Based Design Sensitivity Analysis in PMA

In PMA, probabilistic constraints are described in terms of the probabilistic per-
formance measure, i.e., the performance measure evaluated at the MPP. The
derivative of the estimate of the probabilistic performance measure with respect to
design parameter di, i = 1, …, Nd can be obtained as
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@Gp;FORM
j

@di
¼ @GjðUÞ

@di

����
U¼u�

bj¼bt

ð7:18Þ

where u�bj Uð Þ¼bt is the MPP in the U-space that may be estimated by the AMV,

CMV, or HMV method (see Sect. 7.2.2). Using the transformation U = T(X; d),
Eq. (7.18) can be rewritten as

@Gp;FORM
j

@di
¼ @GjðTðX; dÞÞ

@di

����
X¼x�bj¼bt

ð7:19Þ

where x�bj Uð Þ¼bt is the corresponding MPP in the X-space.

Example 7.1 LCD Manufacturing Process
The bonding process of layered plates (called an Indium-Tin-Oxide
(ITO) sputtering target process) is very popular in the manufacturing of
semi-conductor or electronic display components. During this process, two
plates (glass and copper) are bonded together by a suitable adhesive to form
laminated stacks, which can be further processed in the following 4 steps:

(1) heating the two plates above the melting temperature of the adhesive;
(2) applying the adhesive at each surface of the plate;
(3) putting them in contact with each other;
(4) cooling them down to room temperature.

Heating

Adherent [1] = ITO target
Adherent [2] = backing plate

Adherent[2]Adhesive

Adherent[1]Adhesive

Apply liquid adhesive

Adhesive = Indium

Put together & Cooling

Adherent[2]
Adhesive
Adherent[1]

Adhetent[1]

Adhetent[2]

In this process, residual stress due to the mismatch of the thermal expansion
coefficients of two layered plates could result in failures of the component,
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such as crack, distortion, and interfacial delamination. Therefore, it is
important to accurately estimate the stress in order to improve the product
quality. Here, a transient thermal finite element (FE) analysis was used to
predict the stress and deformation of plates. The model for the layered
bonding plates is shown in Fig. 7.4. Considering the symmetry of the
problem, a quarter of the model is used, as shown in Fig. 7.4a. Due to the
brittle property and high stress at the adherent 1, cracks and distortion could
occur. To reduce such defects, weights are applied on top of the adherent 1, as
shown in Fig. 7.4a from the beginning of the process, and are removed at the
end of the cooling process. The bonding assembly is placed on a pair of
supporting bars, as shown in Fig. 7.4a. Three design variables, weight at the
edge (X1 or F2), weight at the center (X2 or F1), and height of the bar (X3 or
y0), are considered in this problem. Their statistical information is shown in
Table 7.2. The objective is to minimize the sum of the mean and standard
deviation of residual stress. Two constraints are maximum stress during the
process (<130 MPa) and center displacement (<3 mm).

A reliability-based robust design optimization (RBRDO) problem is for-
mulated as

Minimize Q ¼ lr þ rr
Subject to Rj ¼ PðGjðXÞ� 0Þ�UðbtÞ; j ¼ 1; 2

2000�X1 � 10000; 1000�X2 � 5000; 1�X3 � 5;

y
z

x

Adherent 2

F1

Adhesive

Adherent 1

Bar

F2

(a) Isometric view of the quarter model (b) FE model 

Fig. 7.4 Target bonding process and FE model for Problem 7.2

Table 7.2 Statistical properties of design variables in layered plate bonding model for
Problem 7.2

Design variable Distribution type Mean Std. dev.

X1 Normal 4000 400

X2 Normal 2000 200

X3 Normal 1 0.1
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where lr and rr are the mean and standard deviation of residual stress,
G1(X) is the instantaneous stress, G2(X) is the edge displacement, and the
target reliability index bt = 3.
The eigenvector dimension reduction (EDR) method [19], as a variant of
univariate dimension reduction (UDR) introduced in Sect. 5.5.1, is carried
out to evaluate the quality (= mean + standard deviation) of residual stress
and the reliabilities of two constraints. The sampling scheme for the EDR
method is adaptively chosen in the RBRDO process to tackle the high non-
linearity in system responses. First, RBRDO starts with a 2Nd + 1 sampling
scheme for the EDR method. Then when satisfying a relaxed convergence
criteria (e � 0.1), the RBRDO process turns the 4N + 1 sampling on. In this
example, the standard deviation at the fourth design iteration is quite small
but this estimation is not accurate enough because of highly nonlinear
responses. Therefore, after the fourth design iteration, RBRDO is performed
with the 4N + 1 sampling scheme to enhance accuracy of the quality and
reliability estimates. Sequential quadratic programming (SQP) is used as a
design optimizer to solve the RBRDO problem. Table 7.3 shows the design
history of this problem. After eight design iterations, an optimum design is
found where X2 is close to the upper bound. The EDR method requires in
total 87 function evaluations for RBRDO. MCS with 1000 random samples is
used to confirm the EDR results at the optimum design. It is found that the
EDR estimates for the mean (lr) and standard deviation (rr) of the residual
stress at the optimum design are very close to those using MCS. The overall
quality is drastically improved by 38%.

7.2.6 Limitations of Double-Loop RBDO

The double-loop RBDO approaches require two nested optimization loops—an
outer loop for design optimization and an inner loop for reliability analysis (see
Fig. 7.5). The latter is needed to evaluate probabilistic constraints at each design
iteration. The probability constraint in Eq. (7.1) is evaluated by the reliability index
or the probabilistic performance measure, which requires the use of a reliability
analysis method, such as the FORM. As the design iteration proceeds, the
double-loop method tends to converge to a reliability-based optimum design while
satisfying the feasibility of constraints. However, a prohibitive computational cost
could be required due to the inherent nature of the nested structure. To overcome
this inefficiency of the nested loop, (1) decoupled approaches and (2) single-loop
approaches have been proposed. Figure 7.6 shows the categorization of RBDO
methodologies and relevant literature.
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7.3 Decoupled RBDO

One of strategies to decouple the nested loop is to decouple two loops: the outer
loop for deterministic design optimization and the inner loop for reliability analysis.
The separated two loops are performed sequentially until a design optimization
converges (see Fig. 7.7). Compared to the double-loop RBDO, which conducts the
reliability analysis for all design changes in the outer loop, the decoupled RBDO
conducts the reliability analysis only once after the deterministic optimum design
from the outer loop is achieved. That is, the outer loop may have several iterations
but it does not call the inner loop each time. This reduces the number of the
reliability analyses, which accounts for a majority of the computational cost. In the

A new design

Reliability
analysis
loop

Reliability
analysis
loop

Reliability
analysis
loop

Constraint Check:

Constraint 1

Constraint 2

Constraint n

……….

Optimization
loop

Optimal design

Fig. 7.5 Nested double-loop of RBDO. Reprinted (adapted) with permission from Ref. [20]

RBDO Methodologies

Double-Loop Approaches Decoupled (or Sequential) 
Approaches

Single-Loop Approaches

Sensitivity-based approximation 
[64]
RIA-based [1,12]
PMA-based 
[1-3, 5, 15, 16]

Safety factor-based [66]
Sequential optimization 
and reliability assessment 
(SORA) [6]
Direct decoupling 
approach [20]

Single-loop single vector 
(SLSV) [10]
SLSV with most-probable 
point [3]
SLSV with Karush-Kuhn-
Tucker condition [7]
Complete single-loop 
[67]
Semi-single loop [68]

Fig. 7.6 Categorization of RBDO methodologies
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outer loop, the deterministic design optimization is conducted with deterministic
constraints approximating probabilistic constraints. Equation (7.20) shows the
decoupled RBDO problem proposed in [6]. Its key idea is the use of shifting vector

s kþ 1ð Þ
i , which transforms deterministic constraints into shifted constraints compa-
rable to the probabilistic constraints (see Fig. 5 in Ref. [6]). The shifting vector is

updated after every reliability analysis, s kþ 1ð Þ
i ¼ l kð Þ

X � X kð Þ
iMPP, and as the design

optimization proceeds, the difference between the shifted and probabilistic con-
straints diminishes. This approach is based upon the assumption that the reliability
levels of different designs are comparable, and can be estimated with the approx-
imated deterministic constraints. The main concern of the decoupled RBDO is that
the reliability levels of different designs are not always comparable and, therefore,
the accuracy of reliability analysis can be low.

Minimize
d

f dð Þ

Subject toGj d; lX � s kþ 1ð Þ
j

� �
� 0; j ¼ 1; 2; . . .;Nc

ð7:20Þ

where s kþ 1ð Þ
i is the shifting vector for the jth design constraint at the kþ 1ð Þth

design iteration.

Optimization
loop

RL 1st LS RL nth LS

Optimization
loop

RL 1st LS RL nth LS

1st iteration

2nd iteration

Till convergence
is obtained

Fig. 7.7 Flowchart of
decoupled RBDO [6, 21]; RL:
Reliability analysis loop, LS:
Limit state
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7.4 Single-Loop RBDO

Another strategy to decouple the nested loop is to eliminate the inner loop for
reliability analysis by approximating the probabilistic constraints as deterministic
ones. Once the probabilistic constraints are approximated into deterministic ones, a
simple deterministic design optimization can be conducted without additional
reliability analysis (see Fig. 7.8).

There are two major approaches to approximating the probabilistic constraints:
single-loop single vector (SLSV) and Karush-Kuhn-Tucker (KKT) optimality
condition. The SLSV approach leverages the sensitivity of the design variables to
remove reliability analysis by finding the MPP iteratively. The main drawback of
SLSV is that the active constraints should be identified in advance. The second
approach with the KKT condition treats the inner loop of reliability analysis as
the equality constraints in the outer design optimization loop. The single-loop
formulation using the KKT optimality condition is given as follows

Minimize
d

f dð Þ
Subject toGPt ffi G d;X utð Þð Þ� 0

where ut ffi bt � ât

ât ffi � rXG d;X uð Þð ÞJX;u
rXG d;X uð Þð ÞJX;u
		 		

 !
u¼~u

ð7:21Þ

where GPt
is Pt-percentile of the performance function G �ð Þ, bt ¼ �U�1 Ptð Þ is a

target reliability index, JX;u is the Jacobian matrix of the transformation, and ât is
the negative normalized gradient vector of the performance function G �ð Þ evaluated
at the approximate location for the performance function value ~u , which is the
solution of KKT optimality condition.

Conversion of 
Probabilistic
constraints

A simple
optimization

model

A RBDO
problem

Optimal
design

Optimization
loop

Fig. 7.8 Flowchart of
single-loop RBDO. Reprinted
(adapted) with permission
from Ref. [20]
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Instead of searching for the exact MPP at each design iteration, the single-loop
approach obtains an approximate location for the performance function value ~uj by
solving the system equation given by the KKT condition. In Fig. 7.9, the dashed
line G ¼ GPt

is the approximate limit-state function from the conversion of the
probabilistic constraint. This approach may require high computational resources in
order to handle a large number of design variables and calculate second-order
derivatives.

As the single-loop approaches do not require reliability analysis throughout the
optimization process (see Fig. 7.8), they can reduce computational costs signifi-
cantly. However, these approaches can also produce an infeasible design for highly
nonlinear design problems in which the accuracy of the approximation is not
guaranteed.

7.5 Metamodel-Based RBDO

This section introduces RBDO using metamodels, where Kriging-based surrogate
models with adaptive sequential sampling are employed to perform reliability
analysis and design sensitivity analysis in the RBDO framework. Section 7.5.1 first
introduces the reliability analysis in the iterative RBDO process. Section 7.5.2 then
presents the adaptive surrogate modeling with adaptive sequential sampling, and
two case studies are presented in Sect. 7.5.3.

Fig. 7.9 Actual MPP (u*)
and approximate location for
the performance function
value (ut). Reprinted
(adapted) with permission
from Ref. [22]
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7.5.1 Review of Reliability Analysis with Surrogate Models

This section briefly reviews the use of the direct Monte Carlo simulation
(MCS) based on surrogate models for reliability analysis. As discussed in Sect. 4.1,
the probability of failure given a performance function G(X) can be expressed as

Pf ¼ PðGðXÞ[ 0Þ ¼
Z

� � �
Z

GðxÞ[ 0

fXðxÞdx ð7:22Þ

where fX(x) is the joint PDF of the system random inputs X. The direct MCS first
draws from the distribution fX(x) a large number of random samples, and then
evaluates the performance function G(X) at these random samples to estimate the
probability of failure:

Pf ¼ PðGðXÞ[ 0Þ ¼
Z

� � �
Z

If ðxÞfXðxÞdx ¼ E½If ðxÞ
 ð7:23Þ

where E[.] is the expectation operator, and If(x) represents an indicator function,
defined as

If ðxÞ ¼ 1; if GðxÞ[ 0
0; otherwise



ð7:24Þ

7.5.2 Surrogate Modeling with Adaptive Sequential
Sampling

This section introduces the surrogate modeling with adaptive sequential sampling
(SMASS) approach. Section 7.5.2.1 first presents the Kriging-based surrogate
modeling, whereas Sect. 7.5.2.2 introduces the sampling scheme for initial surro-
gate model development. Section 7.5.2.3 then presents a new classification confi-
dence value (CCV)-based adaptive sequential sampling technique for the updating
of Kriging surrogate models; Sect. 7.5.2.4 summarizes the procedure of the
SMASS approach.

7.5.2.1 Kriging-Based Surrogate Modeling

Kriging is a nonparametric interpolation model that requires training samples for
model construction and predicting the performance function values (or responses) at
new sample points [23]. An ordinary Kriging model can be generally expressed as
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GKðXÞ ¼ lþ ZðXÞ ð7:25Þ

where l is the mean response, and Z(x) is Gaussian stochastic process with mean
equal to zero and variance equal to r2. GK(X) is the Kriging predicted response as a
function of X. The covariance function between two input points, xi and xj, is
expressed as

Covði;jÞ ¼ r2Rði;jÞ ð7:26Þ

where R is the correlation matrix. The (i, j) entry of matrix R is defined as

Rði;jÞ ¼ Corrðxi; xjÞ ¼ exp �
XN
p¼1

apjxpi � xpj jbp
" #

ð7:27Þ

where Corr() is the correlation function; and ap and bp are parameters of the
Kriging model. With n number of observations, Gtr = [G(x1), …, G(xn)], at training
samples Xtr = [x1, …, xn], the log likelihood function of the Kriging model can be
expressed as

Likelihood ¼ � 1
2
½n lnð2pÞþ n ln r2 þ ln Rj j þ 1

2r2
ðGtr � AlÞTR�1ðGtr � AlÞ


ð7:28Þ

where A is an n � 1 unit vector. Then l and r2 can be obtained by maximizing the
likelihood function as

l ¼ ATR�1A
� ��1

ATR�1Gtr ð7:29Þ

r2 ¼ ðGtr � AlÞTR�1ðGtr � AlÞ
n

ð7:30Þ

With the Kriging model, the response for any given point x′ can be estimated as

GKðx0Þ ¼ lþ rTR�1ðGtr � AlÞ ð7:31Þ

where r is the correlation vector between x′ and the training points Xtr = [x1, …,
xn], and the ith element of r is given by r(i) = Corr(x′, xi). The mean square error e
(x′) can be estimated by

eðx0Þ ¼ r2 1� rTR�1rþ ð1� ATR�1rÞ2
ATR�1A

" #
ð7:32Þ
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Therefore, the prediction of response at point x′ from a Kriging model can be
considered as a random variable that follows a normal distribution with mean GK(x
′) and variance e(x′).

7.5.2.2 Sampling for Initial Surrogate Model Development

A crucial issue in sequential surrogate modeling is the sampling strategy used to
generate random sample points in order to construct the initial low fidelity surrogate
model. The one-step sampling method, i.e., Latin hypercube sampling
(LHS) method [24, 25] has been widely used for this purpose. By using the LHS,
the random input domain will be occupied most evenly by sample points, thereby
enabling much information about the true model to be obtained. However, it usually
provides similar sample point profiles to occupy the random input domain evenly
regardless of the distribution of true system responses. On the contrary, the
importance sampling technique [26, 27] generates sample points around the limit
state area and predicts the response accurately around the limit state. However, it
usually only provides good local surrogate models and does not represent the true
model accurately enough in other areas of the random input domain. Besides the
LHS method and the importance sampling method, there are other advanced
sampling techniques, such as the Improved Distributed Hypercube Sampling
(HIS) [27], orthogonal-array-based LHS designs [29], and maximin LHS designs
[30], which can all be used to generate sample points to construct the initial
surrogate model. A comparison of these different sampling methods can be found in
Ref. [31]. Without losing the generosity, the LHS method is employed in this study
to generate the initial Kriging model for the SMASS approach.

7.5.2.3 Confidence-Based Adaptive Sequential Sampling

With an initial set of sample points XE and system responses YE, a Kriging model
M (�GK) can be constructed accordingly. However, this Kriging model usually has
a low fidelity, and thus needs to be updated. This subsection introduces a new
confidence-based adaptive sampling scheme for sequential updating of the
Kriging models.

The prediction of the response at point xi from a Kriging model can be con-
sidered as a random variable that follows normal distribution. For any given sample
point xi, based on the Kriging prediction of its response, GK(xi), it can be
accordingly classified as a sampling point in the failure region or safe region. With
this classification, all Monte Carlo sample points can be accordingly categorized
into two classes, as shown in Fig. 7.10, the failure class and the safe class, where
the failure class includes all sample points at which the predicted responses GK(xi)
> 0, and the safe class at which GK(xi) � 0. Knowing that the Kriging prediction
can be considered as a random variable, thus the classification of sample point
becomes probabilistic. Here we define the probability of having a correct
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classification of a sample point as the classification confidence value (CCV). To
compute the CCV, the sample points at two difference classes must be treated
differently. For sample points in the failure class, since failure is defined as G(xi) >
0, the CCV value indicates the probability that the sample point is at the failure
region, which can be accordingly calculated as the area of the normal cumulative
distribution function in the interval of (0, ∞) as

CCVðxiÞ ¼ PðGðxiÞ[ 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � eðxiÞ

p Z1
0

e�
1
2

y�GK ðxiÞ½ 
2
eðxiÞ dy;

for all iwhereGKðxiÞ[ 0

ð7:33Þ

where GK(xi) and e(xi) are the predicted response at point xi and the standard
deviation of the prediction, respectively. Similarly, for sample points in the safe
class, the CCV value indicates the probability that the sample point is at the safe
region, which can be accordingly calculated as the area of the normal cumulative
distribution function in the interval of (−∞, 0) as

CCVðxiÞ ¼ PðGðxiÞ� 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � eðxiÞ

p Z0
�1

e�
1
2

y�GK ðxiÞ½ 
2
eðxiÞ dy;

for all iwhereGKðxiÞ� 0

ð7:34Þ

Based upon the definition, it is clear from Fig. 7.10 that the CCV should be a
positive value within (0.5, 1), where a higher value indicates higher classification
confidence. Combining Eqs. (7.33) and (7.34), the CCV of the sample point xi can
be generally calculated as

CCVðxiÞ ¼ U
GkðxiÞj jffiffiffiffiffiffiffiffiffiffi
eðxiÞ

p
 !

; i ¼ 1; 2; . . .; n ð7:35Þ

where U is standard normal cumulative distribution function, |.| is the absolute
operator, n is the total number of Monte Carlo samples, and GK(xi) and e(xi) is the
predicted response at the sample point xi and the standard deviation of this

(a) (b) 

GK(xi) 0 0 GK(xi)

Fig. 7.10 Sample
classification: a GK(xi) < 0, xi
is classified as a safe sample
point, and b GK(xi) > 0, xi is
classified as the failure
sample point
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prediction, respectively. These values can be obtained directly from the constructed
Kriging model. By using Eq. (7.35), failure potentials of the Monte Carlo samples
can be calculated based on their Kriging-predicted means and standard deviations
of the responses.

In order to improve the fidelity of the Kriging model, especially for the problems
with multiple disjointed failure regions, sample points must be accordingly chosen
from different disjointed failure regions during the sequential Kriging model
updating process, as those sample points could bring much information about the
system performance function at particular failure regions and thus are more valu-
able. Therefore, in the developed SMASS approach, the sample point will be
selected based upon a sampling rule of improving the classification confidence
values using the Kriging model, thus the sample point with the minimum CCV, x*,
will be selected in each Kriging model updating iteration, and the corresponding
performance value y* will be evaluated. This selected sample x* with its actual
response value y* is then added into XE and YE, respectively, and the Kriging
model will be accordingly updated with new sample points added. To prevent same
sample points being used repeatedly in different updating iterations, the selected
sample point x* will be excluded from the original Monte Carlo samples in each
updating iteration. The updated Kriging model is then used to predict the responses
of Monte Carlo samples again. This search and update process works iteratively and
it is terminated when the minimum CCV value reaches a predefined threshold,
CCVt. This stopping rule is defined as

min CCVi �CCVt; i ¼ 1; 2; . . .; n ð7:36Þ

where CCVi is the CCV value for the sample point xi, and CCVt is the predefined
CCV threshold. To ensure a good balance of accuracy and efficiency, it is suggested
that a value of CCVt defined between [0.95, 1) is desirable; in this study, 0.95 has
been used for the CCVt. In implementation of the SMASS approach, it is suggested
that the minimum CCVi in Eq. (7.36) can often be replaced by the average mini-
mum CCV value obtained at the last few updating iterations (e.g., the last five
iterations), in order to ensure a more robust convergence.

7.5.2.4 Procedure of Reliability Analysis Using SMASS

The detailed procedure of the approach is presented in this section. A flowchart of
the SMASS approach in Fig. 7.11 reveals three consecutive steps: (1) produce an
initial set of sample points XE and the corresponding system responses YE in order
to develop the initial Kriging surrogate model. In this study, the Latin Hypercube
Sampling (LHS) method is used for this purpose, and the system responses YE of
the generated samples, XE, are then evaluated through the design of experiments.
(2) Use XE and YE to construct a Kriging model, M, and evaluate the performance
of the model. In this step, the Kriging model is used to predict the responses at a set
of Monte Carlo samples, and the minimum CCV of the predictions, as explained in
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Sect. 7.5.2.3, is used as the performance metric of the Kriging modelM. (3) Update
the Kriging model iteratively by adding sample points into XE and YE using the
CCV-based sampling scheme. The updated Kriging model is used to predict the
responses for a new set of Monte Carlo samples for the probability of failure
estimation.

7.5.3 Stochastic Sensitivity Analysis with Surrogate Models
for RBDO

Design sensitivity information of reliability with respect to random design variables
is essential in the iterative design process, as it not only affects the efficiency but
also determines the convergence of the design process to an optimum design.
In RBDO, while finite different method (FDM) is adopted for design sensitivity
analysis, reliability analysis needs to be performed nd times for the perturbed design
points where nd is number of design variables.

For design sensitivity analysis using sampling-based methods, taking the partial
derivative of probability of failure with respect to the ith design variable di yields

@Pf

@di
¼ @

@di

Z
Rnr

If ðxÞfXðxÞdx ð7:37Þ

Using LHS to generate XE , 
evaluate YE ,  and generate 

samples XMCS

Construct the 
Kriging Model, M

Predict YMCS and 
MSE using M

Evaluate CCVi

min CCVi
> CCVt

Assess the 
performance of M

Calculate Reliability 
Using MCS with M

Evaluate y* at  x*, 
XMCS= XMCS \ x*

XE = [XE ; x*]
YE = [YE ; y*]

No

Yes

Find x* with 
minimum CCV

Fig. 7.11 Flowchart of the SMASS approach
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According to the Leibniz’s rule of differentiation [12], the differential and
integral operators in the Eq. (7.37) can be interchanged, thus yielding the following

@Pf

@di
¼
Z
Rnr

If ðxÞ @fXðxÞ
@di

dx

¼
Z
Rnr

If ðxÞ @ ln fXðxÞ
@di

fXðxÞdx ¼ E½If ðxÞ @ ln fXðxÞ
@di



ð7:38Þ

Although the analytical form for the sensitivity of reliability can be derived, it
cannot be used to compute the sensitivity when all the samples in MCS are iden-
tified as safe. If IRF equals 0 for all the N-samples, Eq. (7.38) becomes

@Pf

@di
¼ @

@di

Z
Rnr

If ðxÞfXðxÞdx ¼ If ðxÞ � @

@di

Z
Rnr

fXðxÞdx ¼ 0 ð7:39Þ

Although zero estimation of the sensitivity based on MCS samples may not lead
to a divergence of the RBDO process, it could result in substantially more design
iterations since the new design point in the subsequent design iteration will be
affected by this sensitivity estimation. This is especially true for a high reliability
target scenario in RBDO, as the sensitivity estimated using the MCS samples based
on Eq. (7.38) will frequently be zero. In same extreme cases, the non-smooth
sensitivity estimation will substantially increase the total number of design itera-
tions, and could also make the RBDO process fail to converge to the optimum
design. To alleviate such a difficulty, a new way to calculate smooth sensitivity of
reliability without extra computational cost is presented here [32]. Defined as the
integration of the probability density function of system input variables over the
safe region (G(X) � 0), the reliability has a monotonically one-to-one mapping
relationship to the ratio of the mean and the variance of the performance function,
which can be expressed as

R ¼ PðGðXÞ� 0Þ ¼
Z

� � �
Z

GðxÞ\0

fXðxÞdx� U
lGðxÞ
rGðxÞ

� �
/ lGðxÞ

rGðxÞ

¼
R
Rnr GðxÞfXðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

Rnr ðGðxÞ � lGðxÞÞ2fXðxÞdx
q ð7:40Þ

where µG(x) and rG(x) are the mean and variance of performance function G
(X) given the random input x. It is should be noticed that the failure probability is
computed by the integration of the probability density function over all of the
failure region, and can be determined by the randomness properties of input x and
performance function G(x). Thus, the probability of failure is a function of the
design variable d. In this equation, the approximate equality should be equality if
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the random response G(x) follows the Gaussian distribution given the randomness
of input x. The sensitivity of reliability with respect to the design variable d can
then be approximated as

@R
@d

/ r lGðxÞ
rGðxÞ

ð7:41Þ

Note that the right part of Eq. (7.41) only provides an estimated sensitivity vector
that is proportional to the true design sensitivity. Thus, the sensitivity information in
Eq. (7.41) can be normalized and derived as

@R
@d

� a�r lGðxÞ
rGðxÞ

� ��
r lGðxÞ

rGðxÞ

� �				
				 ð7:42Þ

where a is a proportional coefficient; ||.|| is norm operation. To calculate the sen-
sitivity of reliability, the derivative term on the right-hand side of Eq. (7.42) can be
derived as

@

@d

lGðxÞ
rGðxÞ

� �
¼ @lGðxÞ

@d
� 1
rGðxÞ

� lGðxÞ �
1

rGðxÞ2
� @ rGðxÞ

� �
@d

ð7:43Þ

The derivative of µG(x) and rG(x) with respect to d can be estimated as

@ lGðxÞ
h i
@d

¼ @
R
Rnr GðxÞfXðxÞdx

� �
@d

� 1
N

XN
i¼1

@ GKðxm;iÞ
� �

@d

@ rGðxÞ
� �
@d

¼
@
R
Rnr ðGðxÞ � lGðxÞÞ2fXðxÞdx

h i
@d

� 1
N

XN
i¼1

½2� GK xm;i
� �� @ GKðxm;iÞ

� �
@d

� 2� lGðxÞ �
@ GKðxm;iÞ
� �

@d

� 2� GKðxm;iÞ �
@ lGðxÞ
h i
@d

þ 2� lGðxÞ �
@ lGðxÞ
h i
@d



ð7:44Þ

To calculate the sensitivity of reliability appropriately, the proportional coeffi-
cient a should be determined. In this paper, a is set to one initially at the first
iteration and will be updated based on the reliabilities of current and previous
designs. Let Rk and Rk+1, respectively, represent the reliabilities of the designs at the
kth and (k + 1)th iterations, dk and dk+1 be the designs at the kth and (k + 1)th
iterations, and SRi denote the sensitivity of reliability calculated using Eq. (7.42) at
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the ith iteration. Also let ak and ak+1 be the proportional coefficients for kth and
(k + 1)th iterations. With these notations, the proportional coefficient ak+1 can be
updated by

akþ 1 ¼ � Rkþ 1�Rk

ðdkþ 1�dkÞ�ðSRkÞ0 ; if Rkþ 1 � Rkj j[Ca

ak; otherwise



ð7:45Þ

where Ca is a predefined critical threshold within 10−1 to 10−4.

7.5.4 Case Studies

Two case studies are employed in this section to demonstrate the proposed
approach to reliability analysis of problems with disjointed active failure regions.

7.5.4.1 A Mathematical Problem

In this example, a two-dimensional nonlinear limit state function G(x) is pro-
vided as shown in Eq. (7.46), in which the two random variables follow normal
distributions with X1 * N(0, 0.82) and X2 * N(2, 0.82), respectively.

GðXÞ ¼ 1
20

ðX2
1 þ 4Þ � ðX2 � 1Þ � sinð2:5X1Þ � 2 ð7:46Þ

The contour of the limit state function G(X) = 0 in Fig. 7.12 shows three disjointed
active failure regions, denoted in the figure by failure region 1, failure region 2, and
failure region 3, respectively. The probability of failure analysis of this mathe-
matical example is conducted with the direct MCS with a very large number of
sample points in order to come up with a benchmark probability of failure value so
that the accuracy of other reliability analysis methods, including the develop
SMASS approach, can be compared. With a sample size of 108, direct MCS pro-
duces an estimated probability of failure of 2.56 � 10−4.

The FORM is also implemented for the case study. As shown in Fig. 7.12, after
a total of 84 iterations, the MPP search converges to the MPP, [−2.895363,
2.911457], which gives an estimated reliability index of 3.7943. Accordingly, the
probability of failure can be estimated by the FORM as 7.4 � 10−5. For each
iteration of MPP search, there are three function evaluations for calculating the
performance function value and its first-order gradient information with respect to
the input variables X. Therefore, the FORM requires a total of 252 function
evaluations. It can be seen from Fig. 7.12 that the FORM method can only find one
MPP in one failure region while ignoring all other potential failure regions. This
results in substantial errors in the probability of failure estimation, as compared with
the MCS estimate.
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A dimension reduction (DR) method, univariate dimension reduction (UDR) as
introduced in Sect. 5.5.1, is also employed for this case study. The UDR method
estimates the probability density function of the performance function through
decomposing a multivariate joint probability function to multiple univariate prob-
ability functions using the additive decomposition method. As shown in Fig. 7.13,
the approximated probability density function of G(X) using UDR is generally with
a single mode. However, when there are multiple disjointed active failure regions,
the PDF of the performance function G(X) is usually multimode. With two random
input variables, the DR method only requires 5 function evaluations. However, due

Fig. 7.12 Contour of the limit state function G(X) = 0 and the MPP found by the FORM

Fig. 7.13 Approximated
PDFs of G(X) by the MCS
and DRM
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to the incapability of estimating multimode probability density functions, the failure
probability obtained by DRM, which is the 2.78 � 10−5 in this case study, shows a
large error, as compared to the MCS result.

In order to further demonstrate the efficacy of the developed SMASS method,
the Kriging surrogate modeling approach without adaptive sequential sampling
(referred to as “simple Kriging”) is employed for the case study. In order to con-
struct a relatively accurate Kriging surrogate model, a total number of 150 training
sample points have been used. In order to avoid the randomness effect of the
training sample points generated by the LHS, the Kriging surrogate model has been
repeatedly developed 100 times, and the mean estimated probability of failure based
upon these 100 Kriging models is 2.17 � 10−4.

The SMASS approach is applied to the case study. As the procedure of SMASS
introduced in Sect. 7.5.2.4, in this case study it is implemented first with 15 initial
LHS sample points, as denoted by the blue circle points in Fig. 7.14. Meanwhile, a
total of 105 Monte Carlo sample points, XMCS, are also generated in order to
identify the best sample points for the sequential updating of the Kriging model.
After 23 iterations of updating of the Kriging model, the minimum CCV value for
all the XMCS sample points satisfies the target classification confidence value, CCVt,
which has been set as 0.95 in this case study. The 23 sequentially sampled points
for the updating of the Kriging model are shown in Fig. 7.14 with stars. It is clear
that the developed SMASS approach is able to locate most of the sample points to
the disjointed active failure regions, in order to enhance the fidelity of the Kriging
model. With a total of 38 evaluations of the performance function, G(X), the
approximated limit state function generated by the developed Kriging model, as
shown by the red dash line in the figure, has a very good match with the true limit

Fig. 7.14 Kriging-predicted limit state function after 27 iterations of updating
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state function, as shown by the black solid line in the figure, respectively. The
approximate limit state function is very accurate, especially at those critical failure
surfaces from multiple disjointed active failure regions. Figure 7.15 shows the
convergence history of the minimum CCV during the Kriging model updating
process. With a total number of 38 function evaluations, the developed SMASS
approach provides a probability of failure estimate of 2.55 � 10−4. From the relative
error comparison, the developed SMASS approach is able to provide the most
accurate probability of failure estimation, compared with the FORM, DRM, and the
simple Kriging method. In addition, the simple Kriging method and developed
SMASS approach are significantly more accurate than FORM and the DRM.
Furthermore, due to the novel adaptive sequential sampling mechanism, the

Fig. 7.15 History of the
minimum CCV during the
iterative Kriging model
updating process

y

F(t)

absorber

main system

Fig. 7.16 A tuned vibration
absorber

7.5 Metamodel-Based RBDO 217



www.manaraa.com

developed SMASS approach is more accurate than simple Kriging, with a much
smaller number of function evaluations. The quantitative results for the comparison
of different probability of failure analysis methods employed in this mathematical
example are summarized in Table 7.4.

7.5.4.2 A Vibration Absorber Problem

In this case study, a vibration absorber problem [33] is employed and the proba-
bility of failure analysis is carried out using the developed SMASS approach in
comparison with FORM, DRM, and the simple Kriging method. A tuned damper
system that includes a main system and a vibrational absorber is shown in Fig. 7.16.
The main system is attached to the ground or a surface by a spring and a damper,
and the absorber is attached to the main system by a spring only. The main system
is subject to a harmonic force FðtÞ ¼ cosðx � tÞ. The purpose of the absorber is to
reduce or eliminate the vibrational amplitude of the main system. This type of
problem often occurs when there is a need to reduce or eliminate the seismic effect
on civil structures.

For the given vibration absorber system, as shown in Fig. 7.16, the normalized
amplitude y of the main system can be calculated as

y ¼
1� 1

b2

� �2����
����ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R 1
b1

� �2
� 1

b1

� �2
� 1

b2

� �2
þ 1

b21b
2
2

� �2
þ 412 1

b1

� �
� 1

b1b
2
2

h i2s ð7:47Þ

where R is the ratio of the absorber’s mass to the main system’s mass, f is the
damping ratio of the main system, b1 is the ratio of the nature frequency of the main
system to the harmonic force frequency, and b2 is the ratio of the nature frequency
of the absorber to the harmonic force frequency. In this case study, R and f are set
as constants with R = 0.01 and f = 0.01, whereas b1 and b2 are considered to be
random variables that follow normal distributions, with b1 * N(1, 0.0252) and b2
* N(1, 0.0252), respectively.

For this case study, it is considered a system failure when the normalized
amplitude y reaches beyond a critical value of 28, thereby the limit state equation

Table 7.4 Reliability analysis results by various approaches for the mathematical example

Approach Probability of failure Error (%) Number of function evaluations

MCS 2.56 � 10−4 N/A 108

FORM 7.4 � 10−5 71.09 252

DRM 2.78 � 10−5 89.24 5

Kriging 2.37 � 10−4 7.42 150

SMASS 2.55 � 10−4 0.39 38
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can be accordingly defined as Gðb1; b2Þ ¼ 28� yðb1; b2Þ. Figure 7.17 shows the
function surface plot of the normalized amplitude y with respect to input variables
b1 and b2. It is clearly shown in Fig. 7.17 that this vibration absorber problem has
two distinct areas located in the random input space symmetrically, leading to two
disjointed active failure regions. As the contour of the limit state function G
(X) shown in Fig. 7.18, there are two disjointed active failure regions, denoted in
the figure by failure region 1 and failure region 2, respectively. The probability of
failure analysis of this vibration absorber case study has been conducted with the
direct MCS with a total number of 108 sample points. A probability of failure of
1.024 � 10−2 has been obtained, which is regarded as the accurate one, while
comparing other probability of failure analysis methods.

Similar to the first case study, the FORM is also implemented for the case study.
Due to the symmetric limit state functions on two disjointed active failure regions,
the convergence of the FORM algorithm becomes starting point dependent, and
particularly it encounters difficulty to converge when the initial starting point of the
algorithm is set to the mean value point as [1, 1] in this case study. To avoid this
divergence issue, a starting point close to failure region 1 has been intentionally
provided. As shown in Fig. 7.18, after a total of 33 iterations of MPP searches, the
FORM is converged to the MPP point [1.041170, 1.045821], providing a reliability
index of 2.46392. Thus, the probability of failure by the FORM can be obtained as
6.871 � 10−3. There are a total of 99 function evaluations used by FORM. From
Fig. 7.18, it is clear that the FORM method can only estimate the probability of
failure based upon one failure region while ignoring all others. Thus, it produces
substantial errors in probability estimation, as compared with the MCS result.

The dimension reduction method (DRM), and more specifically, univariate
dimension reduction (UDR), is employed for this case study. As shown in
Fig. 7.19, the approximated PDF of G(X) using the DRM is compared with the one
obtained through MCS with a large number of simulation samples. With two
random input variables, the DRM method only requires 5 function evaluations.
However, due to the lack of the capability of accurately estimating the tail region of
the probability density function of G(X), as shown in the figure, the failure prob-
ability obtained by DRM, which is zero in this case study, shows a large error
compared with the MCS result.

Fig. 7.17 Surface plot of the
normalized amplitude
y versus b1 and b2
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Similar to the first case study, the Kriging surrogate modeling approach without
adaptive sequential sampling, referred to as simple Kriging, has also been employed
for the case study. In order to construct a relatively accurate Kriging surrogate
model, a total number of 200 training sample points have been used. Figure 7.20
shows an approximated limit state function using a Kriging model constructed with
200 training sample points, as compared with the true limit state function. In order
to avoid the randomness effect of the training sample points generated by the Latin
Hypercube Sampling (LHS), the Kriging surrogate model has been repeatedly
developed 100 times, and the estimated probability of failure on average is 1.163 �
10−2 based upon these 100 Kriging surrogate models.

Fig. 7.18 Disjointed active failure regions by the limit state function and the MPP

Fig. 7.19 Approximated
PDFs of G(X) by the MCS
and DRM
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The developed SMASS approach is applied to the case study. In this case study,
it is implemented first with 15 initial LHS sample points, as denoted by the blue
circle points in Fig. 7.14. Meanwhile, a total of 105 Monte Carlo sample points,
XMCS, are also generated in order to identify best sample points for the sequential
updating of the Kriging model. After 53 iterations of updating of the Kriging
model, the minimum CCV value for all the XMCS sample points satisfies the target
classification confidence value, CCVt, which has been set as 0.95 in this case study.
The 53 sequentially sampled points for the updating of the Kriging model are
shown in Fig. 7.21 with stars. From the identified sequential sampling points,
clearly the developed SMASS approach is able to locate most of the sample points
to the disjointed active failure regions, in order to enhance the fidelity of the
Kriging model. With a total of 103 evaluations of the limit state function, G(X), the
approximated limit state function generated by the developed Kriging model, as
shown by the red dash line in the figure, has a very good match with the true limit
state function, as shown by the black solid line in the figure, respectively. The
approximate limit state function is very accurate, especially at those critical failure
surfaces from multiple disjointed active failure regions. Figure 7.22 shows the
convergence history of the minimum CCV during the Kriging model updating
process. With a total number of 103 function evaluations, the developed SMASS
approach provides a probability of failure estimate of 1.033 � 10−2. From the
relative error comparison, the developed SMASS approach is able to provide the
most accurate probability of failure estimation, compared with the FORM, DRM,
and the simple Kriging method. Due to the novel adaptive sequential sampling

Fig. 7.20 Predicted limit state function by simple Kriging constructed with 200 sample points
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mechanism, the developed SMASS approach is more accurate than the simple
Kriging with a smaller number of function evaluations. The quantitative results for
the comparison of different probability of failure analysis methods employed in this
mathematical example are summarized in Table 7.5.

Fig. 7.21 Kriging-predicted limit state function after 53 iterations of updating

Fig. 7.22 History of the minimum CCV during the iterative Kriging model updating process
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7.6 Exercises

7:1 Consider a mathematical problem for design optimization. The problem has
two design variables X = [X1, X2]

T, and involves three performance functions
that are defined as follows:

G1 Xð Þ ¼ X2
1X2=20� 1

G2 Xð Þ ¼ X1 þX2 � 5ð Þ2=30þ X1 � X2 � 12ð Þ2=120� 1

G3 Xð Þ ¼ 80= X2
1 þ 8X2 þ 5

� �� 1

ð7:48Þ

The two variables follow independent normal distributions with means
d = [d1, d2]

T and standard deviations 0.3 and 0.3. The deterministic design
optimization problem is formulated as follows

Minimize f dð Þ ¼ d1 þ d2
Subject to Gj dð Þ� 0; j ¼ 1; 2; 3

1� d1 � 10; 1� d2 � 10
ð7:49Þ

The RBDO problem with a target reliability of 99.87% (i.e., a target reliability
index of bt = 3.0) is formulated as follows

Minimize f dð Þ ¼ d1 þ d2
Subject to Pr Gj X; dð Þ� 0

� ��U btð Þ; j ¼ 1; 2; 3
0� d1 � 10; 0� d2 � 10

ð7:50Þ

The initial design is d(0) = [5.0, 5.0]T.

(1) Solve the deterministic design optimization problem in Eq. (7.49) using
the ‘fmincon’ function in MATLAB. Discuss and explain your
conclusions.

(2) Solve the RBDO problem in Eq. (7.50) using PMA with the AMV
method by modifying the 99-line RBDO code in Appendix. Start the
design optimization from both the initial design d(0) = [5.0, 5.0]T and
deterministic optimum design obtained from (1). Discuss and explain
your conclusions.

Table 7.5 Reliability analysis results by various approaches for the vibration absorber example

Approach Probability of failure Error (%) Number of function evaluations

MCS 1.024 � 10−2 N/A 1 � 108

FORM 6.87 � 10−3 32.92 99

DRM 0 100.00 5

Simple Kriging 1.163 � 10−2 13.57 200

SMASS 1.033 � 10−2 0.88 103
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7:2 Solve the RBDO problem in Problem 7.1 using RIA with the HL-RF method
(i.e., nm = 2 in the 99-line RBDO code). In this exercise, assume that X2 is a
non-normally distributed random variable and follows a lognormal distribu-
tion with the same mean and standard deviation as defined in the code. (Hint:
Refer to the transformation between the X-space and the U-space for a log-
normal distribution specified in Table 5.1, and consider adding the following
lines of code for the 1st constraint).

①: DXDU(1) = stdx(1);

sigmaL = sqrt(log(1+(stdx(2)/x(2))^2));

muL = log(x(2))-0.5*sigmaL^2;

DXDU(2) = exp(muL + sigmaL*u(2))*sigmaL;

dbeta = u./(beta*DXDU);

②: x(1) = u(1).*stdx(1)+d(1);

sigmaL = sqrt(log(1+(stdx(2)/d(2))^2));

muL = log(d(2))-0.5*sigmaL^2;

x(2) = exp(muL + sigmaL*u(2));

③: DXDU = x(2)*sigmaL;

GCeq(2) = -x(1)^2/20*DXDU;

7:3 Consider a vehicle side-impact problem for design optimization. The opti-
mization task is to minimize the vehicle weight while meeting the side impact
top safety-rating criteria shown in Table 7.6 [34]. There are nine design
parameters used in the design optimization of vehicle side impact. The design
variables are the thickness (X1–X7) and material properties (X8, X9) of critical
parts, as shown in Table 7.7. The two (non-design) random parameters are
barrier height and hitting position (X10, X11), which can vary from −30 to
30 mm according to the physical test.

Table 7.6 Regulations and
requirements for vehicle side
impact

Constraints Safety criteria

G1: Abdomen load (kN) � 1

G2–G4: Rib deflection (mm) Upper � 32

Middle

Lower

G5–G7: Viscous criteria (m/s) Upper � 0.32

Middle

Lower

G8: Pubic symphysis force (kN) � 4

G9: Velocity of B-pillar � 9.9

G10: Velocity of front door at B-pillar � 15.7
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The response surfaces for ten performance measures are constructed from a
vehicle side-impact model as {Gj � gj, j = 1, 2, …, 10}, where the perfor-
mance limits gj form a vector g = [1, 32, 32, 32, 0.32, 0.32, 0.32, 4, 9.9,
15.7]T. The response surfaces of the vehicle weight f and the performance
measures Gi are defined as follows:

f weightð Þ ¼ 1:98 þ 4:90d1 þ 6:67d2 þ 6:98d3 þ 4:01d4 þ 1:78d5 þ 2:73d7;

G1 ¼ 1:16� 0:3717X2X4 � 0:00931X2X10 � 0:484X3X9 þ 0:01343X6X10;

G2 ¼ 28:98þ 3:818X3 � 4:2X1X2 þ 0:0207X5X10 þ 6:63X6X9�7:7X7X8 þ 0:32X9X10;

G3 ¼ 33:86þ 2:95X3 þ 0:1792X10 � 5:057X1X2 � 11X2X8 � 0:0215X5X10 � 9:98X7X8

þ 22X8X9;

G4 ¼ 46:36� 9:9X2 � 12:9X1X8 þ 0:1107X3X10;

G5 ¼ 0:261� 0:0159X1X2 � 0:188X1X8 � 0:019X2X7 þ 0:0144X3X5 þ 0:0008757X5X10

þ 0:08045X6X9 þ 0:00139X8X11 þ 0:00001575X10X11;

G6 ¼ 0:214þ 0:00817X5 � 0:131X1X8 � 0:0704X1X9 þ 0:03099X2X6 � 0:018X2X7

þ 0:0208X3X8 þ 0:121X3X9 � 0:00364X5X6 þ 0:0007715X5X10 � 0:0005354X6X10

þ 0:00121X8X11 þ 0:00184X9X10 � 0:018X2
2 ;

G7 ¼ 0:74� 0:61X2 � 0:163X3X8 þ 0:001232X3X10 � 0:166X7X9 þ 0:227X2
2 ;

G8 ¼ 4:72� 0:5X4 � 0:19X2X3 � 0:0122X4X10 þ 0:009325X6X10 þ 0:000191X2
11;

G9 ¼ 10:58� 0:674X1X2 � 1:95X2X8 þ 0:02054X3X10 � 0:0198X4X10 þ 0:028X6X10;

G10 ¼ 16:45� 0:489X3X7 � 0:843X5X6 þ 0:0432X9X10 � 0:0556X9X11 � 0:000786X2
11:

The deterministic design optimization problem for vehicle crashworthiness is
formulated as follows

Table 7.7 Statistical properties of random design and parameter variables (X10 and X11 both have
0 means) for Problem 7.1

Random variable Distribution type Std. dev. dL d dU

X1 (mm) Normal 0.050 0.500 1.000 1.500

X2 (mm) Normal 0.050 0.500 1.000 1.500

X3 (mm) Normal 0.050 0.500 1.000 1.500

X4 (mm) Normal 0.050 0.500 1.000 1.500

X5 (mm) Normal 0.050 0.500 1.000 1.500

X6 (mm) Normal 0.050 0.500 1.000 1.500

X7 (mm) Normal 0.050 0.500 1.000 1.500

X8 (GPa) Lognormal 0.006 0.192 0.300 0.345

X9 (GPa) Lognormal 0.006 0.192 0.300 0.345

X10 (mm) Normal 10.0 X10 and X11 are not design
variablesX11 (mm) Normal 10.0
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Minimize f dð Þ
Subject to Gj dð Þ� gj; j ¼ 1; . . .; 10

dLi � di � dUi ; i ¼ 1; . . .; 9
ð7:51Þ

The RBDO problem for vehicle crashworthiness with a target reliability of
99.87% is formulated as follows

Minimize f dð Þ
Subject to Pr Gj X; dð Þ� gj

� �� 99:87%; j ¼ 1; . . .; 10
dLi � di � dUi ; i ¼ 1; . . .; 9

ð7:52Þ

(1) Solve the deterministic design optimization problem in Eq. (7.51) using
the ‘fmincon’ function in MATLAB. Start the design optimization from
the initial design (d1–d7 = 1.000, d8 = d9 = 0.300).

(2) Solve the RBDO problem in Eq. (7.52) using PMAwith the AMVmethod
by modifying the MATLAB code in the Appendix. Start the design
optimization from both the initial design (d1–d7 = 1.000, d8 = d9 = 0.300)
and deterministic optimum design obtained from (1).

Appendix: A 99-Line MATLAB Code for RBDO

%%%%%%%%%% A 99 LINE RBDO CODE WRITTEN BY WANG P.F. & YOUN B.D. %%%%%%%%

function RBDO()

clear all; close all; clc;

global nc nd nm bt stdx Iters Cost

nm=2; nc=3; nd=2; bt=norminv(0.99,0,1);

x0=[5,5]; stdx=[0.3,0.3]; lb=[0,0]; ub=[10,10];

xp=x0; Iters=0;

options = optimset(′GradConstr′,′on′,′GradObj′,′on′,′LargeScale′,′off′);

[x,fval]=fmincon(@Costfun,x0,[],[],[],[],lb,ub,@frelcon,options)

%==================== Obj. Function ==============================%

function [f,g]= Costfun(x)

f=x(1)+x(2);

g=[1 1];

Cost=f;

end
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%=================== Define Constraints and Gradiants =================%

function [c,ceq,GC,GCeq] = frelcon(x)

ceq=[]; GCeq=[];

for j = 1:nc

if nm==1

[G,DG]=AMV(x,j);

beta(j)=G;

dbeta(:,j)=DG./stdx;

elseif nm==2

[G,DG]=HL_RF(x,j);

beta(j)=bt-G;

dbeta(:,j)=-DG;

end

end

c=beta; GC=dbeta;

dx=norm(x-xp);

if dx>1d-5 || Iters == 0

Iters=Iters+1;

SHOW(Iters,x,c,GC);

end

xp = x;

end

%=============== PMA Approach with AMV Algorithm ====================%

function [G,DG]=AMV(x,kc)

u=zeros(1,nd); iter = 0; Dif=1;

while Dif>1d-5 & iter<20

iter=iter+1;

if iter>1

u=DG*bt/norm(DG);

end

[G,DG]=cons(u,x,kc);

U(iter,:)=u/bt;

if iter>1

Dif=abs(U(iter,:)*U(iter-1,:)′-1);

end

end

end

%================= RIA Approach with HL_RF Algorithm ==================%

function [beta,dbeta]=HL_RF(x,kc)

u=zeros(1,nd); iter=0; Dif=1; sign = 1;

while Dif >= 1d-5 && iter < 20

iter=iter + 1;

[ceq,GCeq]=cons(u,x,kc);

u=(GCeq*u′-ceq)/norm(GCeq)^2*GCeq;

U(iter,:)=u/norm(u);
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if iter ==1

sign = -ceq/abs(ceq);

elseif iter>1

Dif=abs(U(iter-1,:)*U(iter,:)′ - 1);

end

end

beta = sign*norm(u);

dbeta = -u./(beta*stdx);

end

%========================== Constraint Fun. ==========================%

function [ceq,GCeq]=cons(u,d,kc)

x = u.*stdx+d;

if kc == 1

ceq=1-x(1)^2*x(2)/20;

GCeq(1)=-x(1)*x(2)/10*stdx(1);

GCeq(2)=-x(1)^2/20*stdx(2);

elseif kc == 2

ceq=1-(x(1)+x(2)-5)^2/30-(x(1)-x(2)-12)^2/120;

GCeq(1)=(-(x(1)+x(2)-5)/15-(x(1)-x(2)-12)/60)*stdx(1);

GCeq(2)=(-(x(1)+x(2)-5)/15+(x(1)-x(2)-12)/60)*stdx(2);

elseif kc == 3

ceq=1-80/(x(1)^2+8*x(2)+5);

GCeq(1)=x(1)*160*stdx(1)/((x(1)^2+8*x(2)+5))^2;

GCeq(2)=80*8*stdx(2)/((x(1)^2+8*x(2)+5))^2;

end

end

function SHOW(Iters,x,c,GC)%==== Display the Iteration Information====%

fprintf(1,′\n********** Iter.%d ***********\n′ ,Iters);

disp([′Des.: ′ sprintf(′%6.4f ′,x)]);

disp([′Obj.: ′ sprintf(′%6.4f′,Cost)]);

if nm==1

disp([′Cons.: ′ sprintf(′%6.4f ′,c)]);

elseif nm==2

disp([′Index.: ′ sprintf(′%6.4f ′,bt-c)]);

end

disp([′Sens.: ′ sprintf(′%6.4f ′,GC)]);

fprintf(′\n\n′)

end

end
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Chapter 8
Time-Dependent Reliability Analysis
in Operation: Prognostics and Health
Management

Over the past few decades, rapid adoption of sensing, computing, and communi-
cations technologies has created one of the key capabilities of modern engineered
systems: the ability—at a low cost—to gather, store, and process large volumes of
sensor data from an engineered system during operation. These sensor data may
contain rich information about a system’s behavior under both healthy and
degraded conditions. A critical question now is how to leverage the new sensor
information, which may be continuously or periodically collected, to assess the
current health condition (health reasoning) and predict imminent failures (health
prognostics) of the operating system over its life cycle. This health information can
provide a timely warning about potential failures and potentially open a window of
opportunity for implementing measures to avert these failures. This chapter presents
techniques and approaches that enable (i) design of sensor networks (SNs) for
health reasoning, (ii) extraction of health-relevant information from sensor signals
and assessment of a system’s health condition, and (iii) prediction of a system’s
remaining useful life (RUL).

8.1 Overview of Prognostics and Health Management

Accelerated life testing (ALT) is capable of providing a time-dependent reliability
estimate for a population of system units based on the degradation characteristics of
historical units. We refer to this approach as classical statistics-based,
time-dependent reliability analysis. This type of analysis incorporates population
characteristics into time-dependent reliability estimation by modeling a life distri-
bution. This classical, statistics-based approach provides an overall (or
population-wise) reliability estimate that determines the same life distribution for an
entire population of units. In engineering practice, we may be more interested in
investigating the specific reliability information of a particular unit under its actual
operating conditions to predict the advent of an imminent failure and mitigate
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potential risk. In other words, we may need to perform unit-wise reliability analysis
that estimates the time-dependent reliability of a particular unit. Figure 8.1 provides
a graphical illustration of the difference between population- and unit-wise relia-
bility analyses.

Recent decades have seen a growing interest in moving from traditional non-
destructive testing (NDT) to nondestructive evaluation (NDE) and structural health
monitoring (SHM), and towards automated data analytics for prognostics and health
management (PHM) [1], as shown in Fig. 8.2. Among these major enabling
technologies for unit-wise, time-dependent reliability analysis, PHM has recently
emerged as a key technology that uses data analytics to assess the current health
condition of an engineered system (health reasoning) and predict when and how the
system is likely to fail (health prognostics) throughout the system’s lifetime. The
need for PHM is also being driven by an increased demand for condition-based
maintenance and life extension of high-value engineered systems like bridges and
energy infrastructure (e.g., nuclear power plants, wind turbines, and pipelines).

In general, PHM consists of four basic functions: health sensing, health rea-
soning, health prognostics, and health management (see Fig. 8.3). A brief
description of each function is given here:
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• Health Sensing: To acquire sensor signals from an engineered system through
in-situ monitoring techniques and to ensure a high likelihood of damage
detection by designing an optimal SN.

• Health Reasoning: To extract health-relevant system information from the
acquired sensor signals using feature extraction techniques and to classify
system health states through the use of health classification techniques.

• Health Prognostics: To define a threshold for each anomaly state and predict the
RUL, i.e., the amount of time remaining before the system can no longer per-
form its required function(s).

• Health Management: To enable optimal decision making on maintenance of the
system, based on the RUL prediction, to minimize the life-cycle cost (LCC).

In today’s engineered systems, most system maintenance is either corrective
(i.e., repairing or replacing a system after it fails) or preventive (i.e., inspecting a
system on a routine schedule regardless of whether inspection is actually needed).
The former strategy is called corrective maintenance (CM) and the latter is called
preventive maintenance (PM). Both approaches are expensive and incur high LCCs.
PHM, meanwhile, uses sensor signals from a system in operation to assess the
system’s current health and predict when and how the system is likely to fail. The
health and life information provided by PHM enables field engineers to take a
maintenance action only when needed. This is referred to as a condition-based
maintenance (CBM) strategy. CBM often results in a lower LCC than strategies that
use CM and/or PM (see Fig. 8.4). Consider nuclear power plants as an example.

Fig. 8.3 The four basic PHM functions
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A Nuclear Energy Research Initiative study suggested that, based on a 6% discount
rate and a life of 40 years, the deployment of PHM in all key equipment in the 104
U.S. legacy power plants could potentially save over 1 billion U.S. dollars per year
[2]. When the economic analysis is extended from the nuclear power industry to
consider other sectors in U.S. manufacturing industries, PHM could result in
potential savings in the multi-trillions of dollars.

Another example that illustrates the benefits of PHM is a recent report published
by General Electric (GE) [3]. As mentioned above, PHM enables the marriage of
data analytics and engineered systems for improving the reliability, safety, and
operational efficiency of these systems. The GE report takes a conservative look at
the monetary benefits of this marriage in several industries (see a summary of these
benefits in Table 8.1). An important takeaway from the table is that, even if data
analytics achieves just a one percent efficiency improvement, the results will still be
substantial. For example, in the commercial aviation industry alone, a one percent
improvement in fuel savings would yield an annual savings of $2–3 billion.
Likewise, a one percent uptime improvement in the gas-fired power plant fleet
could yield a $5–7 billion annual savings. Healthcare and rail transportation would
also benefit by multiple billions of dollars, through improvements in process effi-
ciency. As PHM employs data analytics to determine the health and remaining life
of a system and enable optimal decision making on maintenance, the resulting
improvement in reliability, safety, and uptime will have a similarly big impact on
profitability.

It is also important to note that PHM technology can scale well for “Internet of
Things” applications. Specifically, data analytics can be embedded in a cloud
computing environment to allow real-time analysis of large volumes of sensor data
collected from individual system units in the field, and assess and predict perfor-
mance degradation of these units. In recent years, PHM has been successfully

PM CBM CM

Maintenance costFailure cost

Total cost

Number of failures

C
os

t

Fig. 8.4 Costs associated
with different maintenance
strategies

Table 8.1 Illustrative
examples based on a potential
one percent savings applied
across specific global industry
sectors [3]

Industry Power of 1% Annual impact

Airlines 1% fuel saving $2–3B

Oil and gas 1% uptime $5–7B

Healthcare 1% productivity $4–5B

Transportation 1% productivity $1.5–2B
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applied to assess the health conditions of a number of engineered systems and to
predict their RULs for failure prevention and reliability improvement. These
engineered systems can capitalize on PHM to enable early anticipation of failures,
to develop cost-effective maintenance strategies, and to seek opportunities for life
extension. Example of these systems include wind turbines, nuclear power plants,
aircraft engines, power transformers, lithium-ion (Li-ion) batteries, oil pipelines,
and micro-machining tools.

8.2 The Health Sensing Function

As mentioned in Sect. 8.1, the health sensing function of PHM aims at acquiring
sensor signals from an engineered system through in-situ monitoring techniques
and ensuring a high likelihood of damage detection by designing an optimal SN.
The effectiveness of PHM in failure prevention and reliability improvement relies
greatly on the usefulness and completeness of health-relevant information conveyed
by the sensor signals. These measurable physical quantities can be classified into
two major categories: environmental signals (e.g., temperature, pressure, and
humidity) and operating signals (e.g., voltage, current, vibration, and power). In
order to identify an approximate set of sensing quantities, we can first conduct
failure modes and effects analysis (FMEA) to determine critical failure modes and
their effects, and then identify measureable quantities that may be affected by these
modes and/or effects. Potential failure modes and the corresponding sensing
quantities of several engineered systems are shown in Fig. 8.5.

Identifying appropriate sensing quantities (or selecting approximate sensor
types) is one important aspect of the health sensing function. In a broader sense,
there may be interest in designing an optimal SN with high detectability, while
accounting for various sources of uncertainty (e.g., material properties, geometric
tolerances and loading conditions). Sections 8.2.1–8.2.3 present a

Fig. 8.5 Potential failures and sensing quantities of selected engineered systems
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detectability-based SN design framework for system health monitoring and prog-
nostics. Section 8.2.4 discusses self-powered wireless sensors that are increasingly
being used in the health sensing function. Other issues related to design of the
health sensing function will be discussed in Sect. 8.2.5.

8.2.1 Detectability Analysis

The detectability of a given SN design can be derived based on a
probability-of-detection (PoD) matrix [4, 5]. A general form of the PoD matrix for
an engineered system with a number of health states (i.e., HSi, i = 1, 2, …, NHS) is
shown in Table 8.2, where one element Pij is defined as the conditional probability
that the system is detected to be operating at HSj by the SN, given that the system is
actually operating at HSi. Clearly, Pij represents the probabilistic relationship
between the true system health state and the health state detected by the SN.
Mathematically, Pij can be expressed as

Pij ¼ Pr Detected asHSjjSystem is atHSi
� � ð8:1Þ

By definition, the ith diagonal term in the PoD matrix represents a conditional
probability of correct detection for the ith health state; this can be defined as the
detectability of the ith system health state HSi as

Di ¼ Pii ¼ Pr Detected asHSijSystem is atHSið Þ ð8:2Þ

The definition above provides a probabilistic measure for the diagnostic/prognostic
performance of an SN while considering uncertainty in manufacturing and system
operation processes. The diagonal terms in the PoD matrix, which represent the
probabilities of correct detection for predefined health states, will determine the
overall detection performance of the SN. Using the predefined detectability
requirements, these diagonal terms in the PoD matrix will then constitute NHS

number of detectability constraints in the SN design process. Since these
detectability constraints involve the computation of multiple conditional probabil-
ities, an efficient and accurate methodology for detectability analysis must be
developed.

Table 8.2 Probability of
detection (PoD) matrix

Probability Detected health state

1 2 … NHS

True health
state

1 P11 P12 … P 1NHS

2 P21 P22 … P 2NHS

… … … … …

NHS P NHS1 P NHS2 … P NHSNHS
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8.2.2 SN Design Optimization

Appropriate selection of sensing devices—such as fiber optic sensors, piezoelectric
sensors, MEMS sensors, accelerometers, or acoustic sensors—is determined by
each sensor’s characteristic attributes, such as full-scale dynamic range, sensitivity,
noise floor, and analog-to-digital converter resolution. Thus, the design variables
involved in the proposed SN design framework are the decision variables for (i) the
selection of sensing devices, (ii) the number of sensing devices, (iii) the location of
sensing devices, and (iv) the parameters for controlling the sensing process, such as
sampling frequency, sampling period, and power configuration. The design con-
straints are detectability requirements that consider the uncertainty present in the
manufacturing and system operation processes. Considering all factors outlined
above, the SN design optimization problem can be formulated as [4]:

Minimize C
subject to Di XT; XN;XLoc;Xsð Þ�Dt

i
i ¼ 1; 2; . . .;NHSð Þ

ð8:3Þ

where C is the cost involved (calculated as the product of the number of sensors and
the sum of the sensor material and installation costs), XT is a vector of the binary
decision variables for selection of the types of sensing devices, XN is a vector
consisting of the number of each selected type of sensing devices, XLoc is a 3-D
vector of the location of each sensing device, Xs is a vector of the sensing control
parameters, NHS is the total number of predefined health states for the engineered
system, Di is the detectability of the SN for the ith predefined health state, which is
a function of the design variables XT, XN, XLoc, and Xs, and Di

t is the target SN
detectability for the ith predefined health state. Note that the formulation of the SN
design optimization problem bears a resemblance to that of the reliability-based
design optimization problem [6, 7] with the exception that the former uses the
detectability as the constraint and the latter uses the reliability as the constraint.

The SN design optimization problem in Eq. (8.3) contains discrete decision
variables for the selection of sensing devices, integer variables for the number of
selected sensing devices, as well as continuous variables for the sensor locations.
Thus, the optimization problem is formulated as a mixed-integer nonlinear pro-
gramming (MINLP) problem [8], and heuristic algorithms, such as genetic algo-
rithms (GAs), can be used as the optimizer for the optimization process. In this
textbook, the GA is employed for the example problem that will be detailed in the
subsequent section. More alternative algorithms for solving the MINLP problem
can be found in references [8, 9].
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8.2.3 Overall Procedure for SN Design

The flowchart of the SN design optimization process is shown in Fig. 8.6 [4, 5]. As
shown in the figure, the process starts from an initial SN design and goes into the
design optimization subroutine (the grey box on the right-hand side), which will
carry out the SN cost analysis, call the performance analysis subroutine (the grey
box on the left-hand side) to evaluate the performance of the SN in its current
design, and execute the optimizer to generate a new SN design if the optimality
condition is not met. In the performance analysis subroutine, the detectability
analysis (as discussed in the previous section) will be carried out. Before solving the
optimization problem, valid system simulation models have to be built and com-
puter simulations have to be accomplished so that the training and testing data sets
for each predefined health state are available.

It is interesting to note that this design optimization procedure bears a striking
resemblance to the RBDO procedure. The two key elements in the SN design, the
detectability analysis and the design optimization, can be equivalently mapped to
the two key elements in the RBDO, the reliability analysis and design optimization.
This finding can be generalized to other optimization problems, and we can con-
clude that all optimization problems share the same basic structure: the optimization
routine performs design change based on the cost (e.g., product volume, number of
sensors) and constraint (e.g., reliability, detectability) analyses. The two key ele-
ments in SN design, the detectability analysis and the design optimization, will be
discussed in detail in subsequent sections.

Example 8.1 SN Design to Detect Power Transformer Mechanical Joint
Failure
Power transformers are among the most expensive elements in high-voltage
power systems. Effective monitoring of power transformers can enable a
transition from traditional PM to CBM, resulting in significant reductions in
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Fig. 8.6 Flowchart of detectability-based SN design [4]
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LCCs. Due to the difficulties associated with direct sensing inside trans-
formers, the data that are most often used for both diagnosis and prognosis of
transformers are obtained through indirect measurements. This example aims
to design an optimum SN on the front wall surface of a power transformer.
The measurements of the transformer’s vibration responses induced by the
magnetic field loading enable the detection of mechanical failures of the
winding support joints inside the transformer.

Description of the Example

In this example, a loosening of the winding support joint is considered to be
the failure mode. Detection of the failure will be realized by collecting the
vibration signal, induced by magnetic field loading with a fixed frequency on
the power transformer core, using an optimally designed SN on the external
surface of the transformer. The validated finite element (FE) model of a
power transformer was created in ANSYS 10, as shown in Fig. 8.7, where
one exterior wall is removed to make the interior structure visible. Figure 8.8
shows 12 simplified winding support joints, 4 for each winding. The trans-
former is fixed at the bottom surface and a vibration load with a frequency of
120 Hz is applied to the transformer core. The joint loosening was realized by

Fig. 8.7 An FE model of a power transformer (without the covering wall). Reprinted
(adapted) with permission from Ref. [4]
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reducing the stiffness of the joint itself. Different combinations of the loos-
ening joints will be treated as different health states of the power transformer;
these will be detailed in the next subsection.

The uncertainties in this example are modeled as random parameters with
corresponding statistical distributions, as listed in Table 8.3. These uncer-
tainties include the material properties (e.g., Young’s modulus, densities, and
Poisson ratios) for support joints and windings, as well other parts in the
power transformer system. In addition, geometric parameters are also con-
sidered as random variables. These uncertainties will be propagated into the
structural vibration responses and will be accounted for when designing the
optimum SN.

Health States

For the purpose of demonstrating the proposed SN design methodology, 9
representative health states (see Table 8.4) were selected from all possible

1 2 3 4 5 6

7 8 9 10 11 12

Fig. 8.8 Winding support joints and their numbering. Reprinted (adapted) with permission
from Ref. [4]

Table 8.3 Random properties of the power transformer. Reprinted (adapted) with
permission from Ref. [4]

Random
variable

Physical meaning Randomness (cm, g,
degree)

X1 Wall thickness N(3, 0.062)

X2 Angular width of support joints N(15, 0.32)

X3 Height of support joints N(6, 0.122)

X4 Young’s modulus of support joint N(2e12, 4e102)

X5 Young’s modulus of loosening
joints

N(2e10, 4e82)

X6 Young’s modulus of winding N(1.28e12, 3e102)

X7 Poisson ratio of joints N(0.27, 0.00542)

X8 Poisson ratio of winding N(0.34, 0.00682)

X9 Density of joints N(7.85, 0.1572)

X10 Density of windings N(8.96, 0.1792)
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combinations of 12 winding support joint failures. Among these 9 selected
health states, HS1 denotes a healthy condition without the presence of any
loosening joints. HS2 to HS9 are health states with either one or two loosening
joints. Figure 8.9 shows the stress contour of a power transformer in a healthy
state at the nominal values of the random parameters used for the structural
simulation. The first 100 sets of simulation results were used as the training
data set; the remaining simulations were used as the test data set. These
simulation results were later used to evaluate the SN’s detection capabilities.
The problem is formulated with the goal of designing an SN on the surface of
the covering wall of the power transformer to minimize the cost of the SN (or
the number of sensors), while satisfying the detectability constraints for each
health state (i.e., the detectability should be greater than the chosen target
detectability of 0.95).

Fig. 8.9 Stress contour of the winding supports for a healthy-state power transformer.
Reprinted (adapted) with permission from Ref. [4]

Table 8.4 Definition of system health states

Health state 1 2 3 4 5 6 7 8 9

Loosening joints – 1 2 3 1, 2 1, 3 1, 5 1, 9 1, 11
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The vibration amplitude of each node on the surface of the covering wall was
used as the simulated sensor (accelerometer) output. Thus, the design vari-
ables in this example include: (i) the total number of accelerometers, (ii) the
location of each accelerometer, and (iii) the direction (X or Z) of each
accelerometer.

Results and Discussion

The SN design problem in this example was solved using the genetic algo-
rithm. Figure 8.10 shows the detectability for each of the 9 health states at the
optimum SN design, and the detectability for each different number of total
sensors. Using a target detectability of 0.95, we obtained the optimum SN
design on the outer wall surface (140 cm � 90 cm) with a total of 9 sensors.
The results of this example suggest that the proposed SN design framework is
capable of solving SN design problems for complicated engineered systems
with multiple system health states and a wide variety of system input
uncertainties.

8.2.4 Self-powered Wireless Sensors for Health Sensing

The effectiveness of PHM for failure prevention and reliability improvement relies
significantly on the usefulness and completeness of health-relevant information
conveyed by the sensor signals. Advances in wireless communications and
low-power electronics have allowed the deployment of wireless sensor networks

Fig. 8.10 Detectability with an optimum design and detectability with different numbers of
sensors. Reprinted (adapted) with permission from Ref. [4]
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(WSNs) for PHM. However, because the powering of wireless sensors still relies on
chemical batteries, the limited lifespan of chemical batteries makes it difficult to use
wireless sensors, especially when replacement is needed in inaccessible or remote
locations. Furthermore, according to the U.S. Department of Energy [10], estimated
battery replacement costs of $80–$500 (including labor) exceed the price of the
sensor. This battery issue that affects wireless sensors used in health sensing is
prompting research interest in developing a self-powered solution.

Energy harvesting has received much attention as an alternative solution to
possibly eliminate the replacement cost of the chemical batteries in wireless sen-
sors. Energy harvesting technology converts ambient, otherwise wasted, energy
sources into electric power that can be used for operating wireless sensors.
Figure 8.11 shows the concept of energy harvesting for self-powered wireless
sensors.

Energy Conversion (Transduction) Mechanisms

Examples of ambient, otherwise wasted, energy sources include light, fluid flow,
temperature difference, and vibration. A solar cell can convert the energy from light
directly into electric power. This transduction mechanism is called the photovoltaic
effect. While solar cells can produce relatively high power density; their use is
limited in a dim light conditions and they are unsuitable where light is not
accessible.

As shown in Fig. 8.11, thermal energy, such as temperature difference, can be
converted into electric power using the thermoelectric transduction mechanism. The
thermoelectric effect was discovered by the Baltic German physicist, Thomas
Johann Seebeck. Thermoelectricity refers to the direct conversion of temperature
differences to electric voltage, and vice versa. The output voltage generated by the
thermoelectric effect is proportional to the temperature difference between the
junctions of dissimilar conductors.

Fig. 8.11 Concept of energy harvesting for self-powered wireless sensors
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Likewise, vibration energy, one widely available ambient energy source, can be
converted into electric power using piezoelectric, electromagnetic, electrostatic,
and/or magnetostrictive transduction mechanisms. Among vibration-based energy
harvesting technologies, piezoelectric energy harvesting has been preferred due to
its high energy density and easy installation. In 1880, French physicists, Jacques
and Pierre Curie, first discovered piezoelectricity. The prefix ‘piezo’ comes from
the Greek ‘piezein’ which means to pressure or squeeze. In this method, as shown
in the second column in Fig. 8.11, a piezoelectric material produces electric
polarization in response to mechanical strain. This transduction mechanism is called
the direct piezoelectric effect. The amount of output voltage generated by the
piezoelectric material is proportional to the mechanical strain.

Among the aforementioned energy conversion mechanisms, piezoelectric energy
harvesting could be a very attractive solution for powering wireless sensors,
because engineered systems usually induce vibrations in operation. To help the
readers better understand how to realize self-powered wireless sensors for PHM, the
following subsection provides a brief overview of the key issues in piezoelectric
energy harvesting.

Key Issues in Piezoelectric Energy Harvesting

Research in piezoelectric energy harvesting can be broken into four key issues,
specifically: (i) development of materials, (ii) modeling and analysis, (iii) mechan-
ics-based design, and (iv) circuit design. To successfully realize self-powered
wireless sensors using piezoelectric energy harvesting, it is necessary to thoroughly
understand the key issues and make connections between them.

• Development of materials: Piezoelectric materials include lead zirconate titanate
(PZT), zinc oxide (ZnO), polyvinylidene difluoride (PVDF), lead magnesium
niobate-lead titanate (PMN-PT), and polypropylene (PP) polymer. It is never
enough to emphasize only the material issues in order to improve the
mechanical and electrical properties of the piezoelectric material. For example,
piezoelectric ceramics, such as PZT, have a high piezoelectric and dielectric
constant, but are inherently brittle and less durable. Meanwhile, piezoelectric
polymers, such as PVDF, have high flexibility but low electromechanical
coupling. For this reason, many material scientists have been devoted to
developing flexible as well as electromechanically efficient piezoelectric mate-
rials based on nanotechnology.

• Modeling and analysis: Prior to designing the piezoelectric energy harvester and
selecting the best sites for installation, it is essential to make a preliminary
estimate of the output power based on the vibration data acquired from the
engineered system. This issue drives current research interest in developing an
electromechanically-coupled model with high predictive capability, based on
rigorous theories and mechanics. Many research efforts have been made to
advance an analytical model (e.g., lumped-parameter, Rayleigh-Ritz method,
and distributed-parameter) that can describe the physics of the electromechan-
ical behavior of the piezoelectric energy harvester. Since the commercialized
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piezoelectric energy harvester is generally manufactured as a thin cantilevered
structure, the partial differential equation governing piezoelectric coupling under
base excitation is derived based on the Euler-Bernoulli beam (large aspect ratio)
or the Kirchhoff plate (small aspect ratio) theories. To obtain the output current
generated by the piezoelectric energy harvester in response to the mechanical
strain, the coupled electrical circuit equation is derived by substituting the
electric displacement component of the piezoelectric constitutive equation into
the integral form of Gauss’s law. Most electromechanically coupled models
have been developed under the assumption that the input vibration signal is a
harmonic sinusoidal function. Since the inherent random nature (e.g., the vari-
ation of an amplitude and driving frequency) in realistic vibrations induced by
engineered systems significantly affects the output power generated by the
piezoelectric energy harvester, one remaining challenge in the modeling and
analysis involves how to stochastically quantify the output power under
non-stationary random vibrations.

• Mechanics-based design: This research avenue aims to provide an optimal
design of the piezoelectric energy harvester to enhance the conversion effi-
ciency. The most commonly used design of the piezoelectric energy harvester is
a cantilever beam, which can achieve higher mechanical strain and lower res-
onance frequency, thereby producing relatively more electric power. The can-
tilever piezoelectric energy harvester is designed as a linear resonator. This fact
implies that the maximum output power can be obtained when the fundamental
resonance frequency of the piezoelectric energy harvester matches the dominant
driving frequency of the ambient vibrations. As a shape design issue, a trape-
zoidal cantilever beam exhibits better electromechanical performances than a
rectangular cantilever beam due to the uniformly large strain at every point on
the beam. In recent years, the best performance of resonance-based piezoelectric
energy harvesters has been limited to a very narrow bandwidth adjacent to the
resonance frequency; therefore, exploitation of nonlinearity has been proposed
to broaden the bandwidth (e.g., designs such as monostable Duffing, impact, and
bistable oscillator). Another design issue is how to attach the piezoelectric patch
onto the surface of vibrating engineering systems. Since output voltage is
proportional to the strain, tensile strain yields positive output voltage, and
vice-versa. This implies that the output voltage could decrease significantly
when the piezoelectric patch possesses a strain nodal line; this is called voltage
cancellation. Therefore, it is worth noting that the optimal placement of the
piezoelectric patches should be determined to generate the greatest amount of
electric power.

• Circuit design: It is of great importance to develop a power conditioning circuit
to improve energy transfer from the piezoelectric energy harvester to an elec-
trical load (e.g., external electrical resistance) and/or a storage. For instance,
electrical regulation should be optimized to maximize the output power, which
is generally composed of three stages: (i) energy capture, (ii) energy rectifica-
tion, and (iii) energy storage. One of the most important aspects in this electrical
circuit configuration is the impedance matching between a piezoelectric energy
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harvester and electrical regulation. Moreover, while the piezoelectric energy
harvester may produce alternating current (AC) in accordance with the sign
change of the curvatures of the dynamic strains, charging a capacitor requires
stable direct current (DC). Thus, in this case, an AC/DC converter is needed to
supply the electric power needed to operate electronic devices.

Example 8.2 Self-Powered Wireless Sensors Using a Piezoelectric Energy
Harvesting Skin
Figure 8.12 shows an advanced design concept for piezoelectric energy
harvesting, referred to as a multimodal EH skin, which is composed of
piezoelectric patches (e.g., lead zirconate titanate, polyvinylidene fluoride,
and macro fiber composites) directly attached to the structural layer (the
surface of a vibrating engineered system) as one embodiment. Conventional
piezoelectric energy harvesters that are manufactured as a cantilever beam
have some drawbacks from a practical point of view: (i) additional space is
required for a proof mass and clamping fixture, (ii) significant vibration
energy could be lost when a clamping condition becomes loosened after long
periods of use, and (iii) fatigue failure is expected due to the excessive strain
on the clamping part. In contrast, an EH skin does not require clamping
fixtures and proof mass. This example aims to demonstrate how EH skin can
be used to scavenge electric power from realistic vibrations induced by the
electromagnetic motor of a cooling fan (1170–1180 RPM) to enable
self-powered wireless sensors in real-time.

Design Methodology of the EH Skin

In the design of the EH skin, topology optimization is implemented to
determine a highly efficient piezoelectric material distribution based on the
finite element (FE), as shown in Fig. 8.13. Initially, the design space is fully
covered with the piezoelectric material. Since the larger absolute value of the
in-plane normal strains ensures a higher output voltage, topology optimiza-
tion tries to eliminate some piezoelectric materials where the sum of the

Fig. 8.12 Piezoelectric energy harvesting skin for powering wireless sensors
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in-plane normal strains is locally small. Based on this design rationale, it is
important to note that topology optimization can minimize voltage cancel-
lation by segmenting the piezoelectric materials that possess inflection lines.
After topology optimization, the optimal resistors are obtained to maximize
the output power.

Demonstration of In-Situ, Self-powered Wireless Sensors

Figure 8.14 shows the experimental setup devised to demonstrate the capa-
bility of an EH skin for powering wireless sensors in real time. As shown in
Fig. 8.14, four three-dimensional acceleration sensors and one analog tem-
perature sensor were connected to wireless platforms (AmbioMote24 from
AmbioSystems, LLC); these platforms were used to transmit sensor signals to
a laptop computer. Furthermore, the real-time signal acquired from two
acceleration sensors (ID: 19 and 41), as carried by a wireless platform
(AmbioMote24-A), and two acceleration sensors and one temperature sensor

Fig. 8.13 Topology optimization of a piezoelectric energy harvesting skin

Fig. 8.14 Experimental setup for in-situ, self-powered wireless sensors
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(ID: 48, 52, and 40) were connected to the other platform (AmbioMote24-B).
An oscilloscope (LT354 M from LeCroy) was used to measure the output
voltage in real time. While the outdoor condensing unit is in operation, an
output voltage of 4–5 V (peak-to-peak) was measured and all five wireless
sensor signals were successfully transmitted to the laptop computers in
real time.

8.2.5 Other Issues in Designing the Health Sensing
Function

SN optimization can determine the types, numbers, and locations of sensors by
maximizing the detectability of potential failures. Remaining issues include how to
design data acquisition, data communication, and data management strategies for
robust health sensing. First, the data acquisition strategy concerns determination of
the data sampling rate, the data acquisition period, data acquisition duration, etc. In
the case of a steam turbine, gap displacement signals are measured at a sampling
rate of 1024–4096 Hz every ten to sixty minutes and when an anomaly happens.
A lower sampling rate or period can make it difficult to extract useful health
information out of gap signals. In contrast, a higher sampling rate or period burdens
data acquisition, communication, and management solutions. Therefore, decision
making about data acquisition is extremely important for the rest of the health
sensing, reasoning, and prognostics functions. Second, data communication and
networking deal with data logging, wired/wireless data communication, and data
networking protocols (Ethernet, TCP/IP, etc.) and technologies (RFID, WiFi, BT,
LTE, etc.). In the case of a smart factory, wireless data communication and net-
working is preferred; however, some technical challenges remain in terms of data
loss, power supply to wireless sensors, cyber-security, etc. This decision must be
made to maximize the reliability of data transmission, which is highly influenced by
data size and structure (determined by the data acquisition strategy), engineering
site (i.e., outdoor/indoor), facility types, budget, and so on. Third, the data man-
agement strategy is concerned about the development and execution of architec-
tures, procedures, and practices that adequately manage the full data lifecycle needs
of the engineering assets. The data management strategy should be designed to
ensure a high level of data quality and accessibility for big data analytics and to lay
the foundation for the rest of the PHM process.
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8.3 The Health Reasoning Function

The primary tasks of the health reasoning function are extraction of health-relevant
system information (or features) from raw sensor signals and early detection of
faults based on the extracted health-relevant information. These tasks can be
accomplished by (i) continuously or periodically monitoring the operation of an
engineered system, (ii) detecting and diagnosing abnormal conditions or faults of
the system using feature extraction and health classification techniques, and
(iii) assessing the significance of the detected faults. The procedure for executing
the health reasoning function is shown in Fig. 8.15. The process involves the
following key steps:

• Signal preprocessing: The aims of signal preprocessing are to isolate specific
signals of interest, filter out noise and outliers, and/or achieve a normalized scale.
Signals that are preprocessed are expected to achieve better accuracy in fault
detection and classification than those that are not preprocessed. The applicability
of one specific signal preprocessing technique depends on the kinds of signals
that need to be preprocessed, how noisy they are, how many outliers they contain,
and what techniques will be used in the subsequent processing steps. Some of the
most important techniques include time synchronous averaging resampling,
signal filtering, and various averaging techniques.

• Feature extraction: This step extracts health-relevant features from raw or pre-
processed sensor measurements acquired from continuous or periodic sensing of
an engineered system. Inherent in this feature extraction step is the condensing
of raw sensor data. Commonly used feature extraction techniques include time
domain analysis (e.g., statistical moment calculation), frequency domain anal-
ysis (e.g., FFT), and time-frequency domain analysis (e.g., wavelet transform).

• Feature selection: Feature selection aims at selecting an optimum subset of
features that minimize redundancy and focus on features of maximum relevance
to the health states of the system. Both non-adaptive and adaptive approaches
can be used to select features that are capable of discriminating measurements
that belong to different health states.

• Fault detection and classification (health diagnostics): This step involves (i) fault
detection that determines whether some type of fault has occurred, and (ii) fault
classification that identifies to which of a set of health states (defined based on
fault type and location) a new measurement belongs. An additional process is
often needed to quantify the severity of a detected fault (e.g., the size of a crack
on a plate, the loss of power from a battery) in the form of a normalized health
measure, or health index. This additional process yields a quantitative measure
of the fault and is particularly useful for health prognostics.

Together, fault detection and classification are commonly called health diagnostics.
In most engineered systems equipped with the capability of health diagnostics, fault
detection runs continuously, while fault classification is triggered only upon the
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detection of a fault. In other systems, fault detection and classification may run in
parallel and be performed simultaneously.

8.3.1 Signal Preprocessing

Prior to feature extraction, raw sensor signals are often preprocessed to isolate
specific signals of interest, to remove noise and outliers, and/or to achieve a nor-
malized scale. Signal preprocessing is essential to ensuring good accuracy in fault
detection and classification. Several important techniques for signal preprocessing
are discussed in the following sections.

8.3.1.1 Resampling

Resampling is a signal preprocessing technique that changes the sampling rate of the
raw sensor signals. Since most of the signals are acquired using a pre-determined
sampling rate, the signals may require resampling to consider the signal character-
istics. Reducing the sampling rate by an integer factor is called downsampling;
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Health Reasoning
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measure

What health information 
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type, location and severity
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expected to progress?
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signals

Fig. 8.15 Flowchart for health reasoning and prognostics
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whereas, increasing the sampling rate by an integer factor is called upsampling. Note
that downsampling is used with an anti-aliasing filter because the sampling rate
reduction causes distortion of high-frequency components. Combining downsam-
pling and upsampling, sampling rate conversion by a noninteger factor can be
achieved. For example, the rotating speed of a rotor system fluctuates, while the
sampling rate is fixed. Thus, the raw vibration signals have a different number of
points per a rotation of the rotor, which will increase uncertainties in the analysis
procedure. Uncertainty can be reduced by resampling the signals into a fixed number
of points per cycle with respect to the tachometer signals.

8.3.1.2 Time Synchronous Averaging

Time synchronous averaging (TSA) is a signal preprocessing technique that extracts
periodic waveforms from noisy data. TSA has been widely used for gearbox
diagnostics [11–14], where it can allow the vibration signal of a gear of interest to
be isolated from noisy vibration signals. The isolated signal of the gear ideally does
not contain the signals of other gears or noise sources that are not synchronous with
the gear. The two-step procedure for conventional TSA is shown in Fig. 8.16. In
Step 1, the raw sensor signal is divided into N segments based on the rotational
frequency of the gear of interest. In Step 2, an ensemble average over the divided
segments is taken to form a preprocessed signal [14]. Since vibration signals are
collected with a pre-determined sampling rate, while the system operates with a
varying rotational speed, the number of the divided segments in Fig. 8.16 may vary
from one revolution to the next. Thus, the vibration signals should be resampled so
that the number of samples assigned during a single revolution of the gear remains
constant [15]. This can be achieved by interpolating the vibration signal with a
constant angle interval of consecutive samples. Using TSA, the vibration signal
produced by the gear of interest remains in its own shape because every divided
segment contains similar vibration patterns created by meshing of the gear of

Fig. 8.16 Procedure for conventional TSA. Reprinted (adapted) with permission from Ref. [14]
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interest. On the other hand, the noise term converges to zero as a considerable
number of segments accumulates, as shown in the lower right of Fig. 8.16.

TSA needs to be revised for use in more complex gearboxes, such as planetary
gearboxes in which planet gears revolve around a sun gear (see Fig. 8.17). Because a
typical sensor is fixed at a gearbox housing, the measured vibration signal is mod-
ulated as a function of the distance from the fixed sensor to the revolving planet gears.

For such systems, TSA has been developed with a window function [14]. The
window function extracts the vibration signals as the planet gears approach the
sensor so that the extracted signals can be used for ensemble averaging, as shown in
Fig. 8.16. This process enables the vibration signals that are out of interest to be
ignored, while increasing the signal-to-noise (S/N) ratio. Typical mathematically
defined window functions, such as Tukey window and Hann window, have a
bell-shape to highlight the instances in which the planet gears pass the sensor and
reduce the signal amplitude when the planet gears are located far from the sensor.
Extracted vibration signals from the bell-shaped window function would have high
similarity and could serve as good sources for the ensemble averaging process
shown in Fig. 8.16. Autocorrelation-based TSA (ATSA) was developed [14] as a
more physics-oriented approach. The autocorrelation function, which is a measure
of similarity, increases as the planet gears approach the sensor and decreases as the
planet gear recedes from the sensor. In ATSA, the autocorrelation function is used
to quantify the similarity of the measured signal as a function of the distance from
the fixed sensor to the revolving planet gears; this function is then used to design
the shape of the window function.

8.3.1.3 Filtering

Filtering is the process used to extract signals of interest while removing or
deforming unwanted frequency components. Because a filter is a kind of system
that uses a signal as an input to result in another signal as an output, the filtering
process can be illustrated as shown in Fig. 8.18. The frequency components of the

Fig. 8.17 Vibration modulation due to the revolution of the planet gears of a planetary gearbox
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input signal (X(jw)) are modified by the frequency characteristics of the filters (H
(jw)). A sound equalizer is one of the most popular applications of a filter that
modifies the frequency-shape of an input signal. If an equalizing filter has a high
value for low frequencies and a low value for moderate or high frequencies, the
filter will enhance the bass sound.

In engineered systems, frequency-selective filters and linear finite impulse
response (FIR) and infinite impulse response (IIR) filters are the most widely used
filters. Frequency-selective filters have unit values for the desired narrow-range
frequencies and zeros for the other frequencies, as shown in Fig. 8.19, where a
low-pass filter, a band-pass filter, and a high-pass filter are presented. For example,
in a multi-stage rotating system, a low-pass filter, a band-pass filter, and a high-pass
filter can be used to selectively analyze the health state of the low-speed shaft,
middle-speed shaft, and high-speed shaft, respectively. On the other hand, a
low-pass filter and a high-pass filter can be used to filter out high-frequency noise
components and low-frequency undesired modulating components, respectively.

Other filtering methods, such as the moving and exponential average smoothing
techniques, can also be used to filter out noise and outliers in raw sensor signals.
These moving and exponential average smoothing techniques are special cases of
the well-known linear finite impulse response (FIR) and infinite impulse response
(IIR) filters, respectively, and are popular due to their ease of implementation.
Linear filters estimate the current data point by taking a weighted sum of the current
and previous measurements in a window of a finite or infinite length.
Mathematically, the FIR filter can be represented as [16]

Fig. 8.18 Filtering process

Fig. 8.19 Examples of frequency-selective filters
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x̂k ¼
XI

i¼1

wixk�iþ 1 ð8:4Þ

where I is the length of the filter, and {wi} is the sequence of weights that define the
characteristics of the filter and sum to unity. Note that when all weights are equal,
the FIR filter reduces to the mean or average filter. IIR filters are linear filters with
infinite filter lengths. An important IIR filter is the so-called exponentially weighted
moving average, which filters the current measurement by exponentially averaging
it with all previous measurements [16]

x̂k ¼ axk þ 1� að Þx̂k�1 ð8:5Þ

where a is an adjustable filtering parameter between 0 and 1.
Computation of the output of a median filter can be done in two steps. First, an

odd number of measurement values are sorted. Second, the median value is esti-
mated and used as the filter output. As can be observed in Eq. (8.6), median filters
use both past and future measurements for smoothing the current measurement.
Despite their advantages over linear filters, median filters have several drawbacks.
For example, a median filter can cause edge jitter, streaking, and may remove
important details in the signals [17, 18]. This is mainly because median filters only
use rank-order information of the input data and discard the input data’s original
temporal order information. One way to use both rank and temporal order infor-
mation of sensor data is to combine a FIR filter with a median filter, which gives
rise to a FIR-median hybrid filter [19]. The hybrid filter synthesizes the capability of
the FIR filter to remove noise in stationary signals and achieve the desirable
properties of the median filter.

Although linear filters are easy to implement and produce good filtering per-
formance, they can smooth out features in a signal that may actually indicate the
onset of a fault [17, 18]. Non-linear filters, in contrast, offer the opportunity to
preserve edges in the signal, while still reducing noise and removing gross outliers.
As a popular class of non-linear filters, median filters possess three important
properties: (i) edge preservation, (ii) noise reduction, and (iii) robustness against
gross outliers. A median filter with a length of 2I + 1 can be represented as [17, 18]

x̂k ¼ median xk�I ; xk�Iþ 1; xk�Iþ 2; . . .; xk; . . .; xkþ I�2; xkþ I�1; xkþ Ið Þ ð8:6Þ

8.3.1.4 Signal Normalization

As multiple sensor signals may have significantly different scales, the process of
normalizing the sensor signals is important to ensuring robust fault detection and
classification. An example of data normalization on a single sensor signal is shown
in Fig. 8.20, where the raw measurements acquired by a sensor are normalized
roughly between 0 and 1.
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8.3.2 Feature Extraction

Feature extraction can be any computer operation or series of operations performed
on preprocessed sensor data to gain insightful, health-relevant information. Feature
extraction processes the sensor data in the time, frequency, and joint time-frequency
domains to generate a set of features that may indicate the presence of various faults.

MATLAB® DSP System Toolbox

The Digital Signal Processing (DSP) System Toolbox provides algorithms and tools
for processing digital signals in MATLAB® and Simulink®. It allows signal pro-
cessing systems to be designed and prototyped using signal processing algorithms
and components in the Simulink® block format. Figure 8.21 shows the Library
contained in the DSP system toolbox (type “dsplib” in the MATLAB command
window to open this library).

Feature Extraction in the Time Domain

A variety of statistical tools can be applied to time domain signals to acquire
characteristic features. The following is an incomplete list of such tools:

• Distribution Fitting: Find the best distribution fit of the input data.
• Histogram: Generate a histogram of an input or sequence of inputs.
• Autocorrelation: Compute an autocorrelation of vector inputs.
• Correlation: Compute a cross-correlation of two inputs.
• Max./Min.: Find the maximum or minimum values in an input or sequence of

inputs.
• Mean: Find the mean value of an input or sequence of inputs.
• Standard Deviation: Find the standard deviation of an input or sequence of

inputs.
• Variance: Compute the variance of an input or sequence of inputs.
• RMS: Compute the root-mean-square (RMS) value of an input or sequence of

inputs.

Fig. 8.20 Raw (a) and normalized (b) sensor signals
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• Sort: Sort input elements by value.

Representative features in the time domain are presented in Table 8.5. Among the
eight time-domain features, max (t1), mean (t2), and root mean square (t3) are
related to the energy of a signal. Standard deviation (t4), skewness (t5) and kurtosis
(t6) are directly related to the second, third, and fourth standardized moments, and
respectively measure the dispersion, lopsidedness, and heaviness of the tail of the
signal distribution. The last three features, namely crest factor (t7), shape factor (t8),
and impulse factor (t9), measure different aspects (e.g., sharpness) of the shape of a
sinusoidal wave.

Example 8.3 Data processing in a MATLAB® DSP System Toolbox
First, build the data processing block diagram shown in Fig. 8.22. As the
sinusoid signal shown in Fig. 8.23a is being processed, the RMS signal in

Fig. 8.21 MATLAB® DSP signal processing library
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Fig. 8.23b can be obtained. RMS signals are usually used to detect changes in
machine vibrations.

Table 8.5 Representative features in the time domain

Index Features Description

t1 Max (xmax) max(|xi|)

t2 Mean (�x) 1
m

Pm
i¼1

xij j

t3 Root mean square (xrms)
ffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
x2i

m

r
t4 Standard deviation (r)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
xi��xð Þ2

m�1

r
t5 Skewness

Pm

i¼1
xi��xð Þ3

m�1Þr3ð
t6 Kurtosis

Pm

i¼1
xi��xð Þ4

m�1Þr4ð
t7 Crest (peak) factor xmax

xrms

t8 Shape (waveform) factor xrms
�x

t9 Impulse (pulse) factor xmax
�x

Fig. 8.22 Signal processing example: RMS block diagram
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Feature Extraction in the Frequency Domain

When features extracted in the time domain do not appear to be informative, feature
extraction in the frequency domain can be pursued. Fourier analysis converts a
time-series signal from the original time domain to a representation in the frequency
domain. This means that it generates a description of the distribution of the energy
in the signal as a function of frequency. This is normally displayed as a plot of
amplitude (y-axis) against frequency (x-axis) called a power spectrum. Fast Fourier
transform (FFT), which rapidly performs Fourier analysis, has been widely used in
many applications in engineering, science, and mathematics. Representative fea-
tures that can be extracted from the power spectrum of a signal are presented in
Table 8.6. In the table, f and s(f) are the frequency and the power spectrum of the
frequency, respectively. Among the three frequency domain features, frequency
center (f1) and root mean square frequency (f2) are respectively the arithmetic and
quadratic means of the frequency. Root variance frequency (f3) measures the dis-
persion of the power spectrum.

Consider a rotating bearing as an example. As the fault in the bearing progresses
over the bearing’s lifetime, the magnitudes of the vibration responses at the charac-
teristic frequencies generally increase (see Fig. 8.24), and thus provide health-
relevant information that can be used for health diagnostics and prognostics [20].

Fig. 8.23 Sample sinusoid signal (a) and RMS signal (b)

Table 8.6 Representative features in the frequency domain

Index Features Description

f1 Frequency center (FC)
R

f�s fð ÞdfR
s fð Þdf

f2 Root mean square frequency (RMSF) R
f 2�s fð ÞdfR
s fð Þdf

� �1=2
f3 Root variance frequency (RVF) R

f�FCð Þ2�s fð ÞdfR
s fð Þdf

� �1=2
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Example 8.4 Fast Fourier transform
The MATLAB codes shown below generate a time domain signal, the sum of
three sinusoid signals with resonant frequencies at 50, 120, and 200 Hz, and
corrupt the signal with a Gaussian noise (see Fig. 8.25a). Then, the codes
perform FFT on the signal and obtain a frequency-domain spectrum (see
Fig. 8.25b) of the time-domain signal. Note that this example can also be
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Fig. 8.24 Life-cycle evolution of vibration spectra (a) and RMS (b) with an inner race defect on a
rotating bearing. Reprinted (adapted) with permission from Ref. [20]

Fig. 8.25 Time domain signal (a) and frequency domain signal (b)
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done by building a FFT block diagram using the MATLAB® DSP System
Toolbox.

t = 0:0.001:0.6;
x = sin(2*pi*50*t)+sin(2*pi*120*t)+sin(2*pi*200*t);
y = x + randn(size(t));
figure(1)
subplot(2,1,1)
plot(1000*t(1:50),y(1:50))
xlabel(′Time (Milli-Seconds)′)
ylabel(′Signal with Random Noise′)

subplot(2, 1, 2)
Y = fft(y, 512);
Fy = Y.* conj(Y)/512;
f = 1000*(0:256)/512;
plot(f, Fy(1:257))
xlabel(′frequency (Hz)′);
ylabel(′Frequency Content of Signal′);

Feature Extraction in the Joint Time-Frequency Domain

There is a tradeoff between the resolution in the frequency domain and that in the
time domain. A good resolution in the frequency domain may imply a poor reso-
lution in the time domain. Similarly, a good resolution in the time domain may
imply a poor resolution in the frequency domain. Although frequency domain
representations, such as the power spectrum of a signal, often provide useful
spectral information, the representations do not show how the frequency content of
the signal evolves over time. Hence, it is important to introduce the time variable
into the frequency domain analysis in order to represent the change of the spectral
content over time. Joint Time-Frequency Analysis (JFTA) comprises a set of
time-frequency transforms that map a one-dimensional time domain signal into a
two-dimensional representation over both time and frequency [21]. JTFA builds a
bridge between the time and frequency domain representations in that it provides
both the frequency content of a signal and the change of the frequency content over
time. The time-frequency transforms in JTFA are particularly useful for the rep-
resentation of nonstationary signals containing multiple time-varying frequencies.

There are a number of different time-frequency transforms available for JTFA.
The simplest transform is the Short Time Fourier Transform (STFT), which divides
a longer time signal into shorter segments of equal length and then applies FFT
repeatedly to these shorter segments [22]. This process reveals the Fourier spectrum
on each of the shorter segments over a certain period. The changing spectra can be
plotted as a function of time on a 3-D graph or a 2-D 1/2 representation (energy
represented as colors with varying intensities of red, green, and blue light). Other
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time-frequency transforms that can yield an estimate of the energy in a given
time-frequency domain include wavelet transform [23, 24], Wigner distribution,
Choi-Williams distribution, and spectrogram [25].

8.3.3 Feature Selection

As mentioned earlier, we can extract a large number of features (in the time,
frequency, and time-frequency domains) from raw sensor signals. Among these
features, only a subset of the features is relevant and should be used to build a
health diagnostic model. Thus, we need to select the most relevant and unique
features, while removing most irrelevant and redundant features from the data to
improve the performance of the diagnostic model.

Feature Selection Using Non-adaptive Approaches

One method for selecting features for fault identification is to apply engineered
flaws, similar to the ones expected in actual operating conditions, to systems and
develop an initial understanding of the features that are sensitive to the expected
fault. The flawed system can be used to identify the features that are sensitive
enough to distinguish between the fault-free and faulty system. The use of
analytical tools, such as experimentally validated finite element models, can be a
great asset in this process. In many cases, analytical tools are used to per-
form numerical experiments where flaws are introduced through computer
simulation.

Damage accumulation testing, during which significant structural components of
the system under study are degraded by subjecting them to realistic loading con-
ditions, can also be used to identify appropriate features. This process may involve
induced-damage testing or accelerated degradation testing (e.g., fatigue testing,
corrosion growth, and temperature cycling) to acquire feature data under certain
types of damage states in an accelerated fashion. Insight into the appropriate fea-
tures can be gained from several types of analytical and experimental studies, as
described above, and is usually the result of information obtained from some
combination of these studies.

Feature Selection Using Adaptive Approaches

In addition to the non-adaptive approaches mentioned above, adaptive approa-
ches can also be used for selecting relevant features. As shown in Fig. 8.26, an
adaptive approach typically consists of four major components, namely (i) feature
subset generation, (ii) performance evaluation, (iii) stopping criteria check, and
(iv) online testing. In the training phase, a certain search strategy generates can-
didate feature subsets, of which each subset is evaluated according to a diagnostic
performance measure and compared with the previous best one with respect to this
measure. A new, better subset replaces the previous best subset. This is repeated
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until a stopping criterion is satisfied. In the testing phase, the performance of the
selected subset of features is evaluated with testing data not used in the feature
selection process.

Feature Selection Using Deep Learning

One of the main issues with PHM of complex engineered systems is the lack of
labeled data (i.e., data acquired from an operating system whose health state is
known) as well as the cost of labeling unlabeled data (e.g., by performing additional
diagnostics to assess the health of an operating system). Thus, there has been
interest in exploring the use of unlabeled data as a way to improve prediction
accuracy in fault diagnostics and failure prognostics. The availability of large
volumes of this kind of data in many complex systems makes it an appealing source
of information. Recently, deep learning methods have made notable advances in the
fields of speech recognition [26, 27], computer vision [28, 29], and natural language
processing [30, 31]. The unique ability of deep learning to automate learning of
high-level, complex features from large volumes of unlabeled data makes it
attractive for porting to the feature extraction/selection toolbox of a PHM practi-
tioner. In particular, the practitioner could investigate the use of deep belief net-
works (DBNs) [32, 33], built as a stack of Restricted Boltzmann Machines (RBMs)
on top of each other (see Fig. 8.27), to address the challenges of feature discovery
when dealing with large amounts of unlabeled monitoring and inspection data.

In a DBN, the features are learned in a layer-by-layer manner, and the features
learned by one-layer RBM become the input data for training the next layer of the
RBM. This hierarchical multi-level learning extracts more abstract and complex
features at a higher level, based on the less abstract features/data in the lower level
(s) of the learning hierarchy. The bottom-layer RBM is trained with the prepro-
cessed monitoring and inspection data, and the activation probabilities of hidden
units are treated as the input data for training the upper-layer RBMs. Once the
network is trained, the top layer’s output becomes highly representative of deep
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Fig. 8.26 Flowchart for an adaptive feature selection process
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features (see Fig. 8.27) that can be used for fault diagnostics and failure prognos-
tics. For the purpose of fault diagnostics, conventional classification models (see
Sect. 8.3.4) can be trained, leveraging the deep features, with the aid of small
amounts of labeled data.

8.3.4 Health Diagnostics

Fault diagnosis aims at determining the fault type, location, and severity based on the
extracted feature. This task can be treated as a classification problem. The algorithms
used in health classification usually fall into two categories: supervised classification
and unsupervised classification. These two categories are illustrated in Fig. 8.28.
When labeled data are available from both the fault-free and faulty systems, the sta-
tistical pattern recognition algorithms fall into the general classification referred to as
supervised classification. Note that supervised classification belongs to a broader
category, supervised learning, which also includes supervised regression (often useful
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Fig. 8.28 Supervised classification (a) and unsupervised classification (b)
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for health prognostics). Unsupervised classification refers to classification algorithms
that are applied to data not containing examples from the faulty system. Unsupervised
classification only aims to find the patterns in the data and create clusters to derive
relationships inherent in the data. Outlier or novelty detection is the primary class of
algorithm applied in unsupervised learning applications.

Supervised Fault Classification

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA), also known as Fisher Discriminant Analysis
(FDA), is a supervised classification technique that computes the directions of
projection (or linear discriminants) that maximize the separation between multiple
classes and minimize the variance within the classes [34, 35]. Suppose an input data
set D, which contains m feature-class pairs, can be organized as {(x1, c1), …, (xm,
cm)}, where xi is the ith feature vector of dimension N, and ci is the class label of xi
indicating the class to which xi belongs. Given the feature-class data set D, LDA
aims to create a linear combination of the N features, which yields the largest
differences between the means of the classes and the minimum variance within each
class. Multi-class LDA is based on the analysis of two separation matrices: the
with-class separation matrix and the between-class separation matrix.
Mathematically, the between-class separation matrix is given by

Sb ¼
XMc

j¼1

mj lj � l
� �

lj � l
� �T ð8:7Þ

where Mc is the number of classes, mj is the number of features in class j, µj is the
mean vector of the original features in the jth class, and µ is the mean vector of the
features in the entire Mc class. Similarly, the within-class separation can be
defined as

Sw ¼
Xm
i¼1

xi � lci
� �

xi � lci
� �T ð8:8Þ

Let w represent the project vector that maps the original N-dimensional features
onto a one-dimensional space (or a line). The projected features can be expressed as
yi = w�xi, for i = 1, …, m. Then, multi-class LDA can be formulated as an opti-
mization problem in search of w that maximizes the ratio of the between-class
separation to the within-class separation, as

ŵ ¼ argmax
w

wTSbw
wTSww

ð8:9Þ

If Sw is a nonsingular matrix, the solutions to the optimization problem in Eq. (8.9)
are the eigenvectors of Sw

−1Sb [34]. Generally, Sw
−1Sb has at most Mc − 1 nonzero
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generalized eigenvectors that can be used to discriminate between the classes.
Figure 8.29 shows two classes (i.e., Mc = 2), marked by red dots and blue crosses.
For each class, the underlying (but unknown) distribution of x1 is shown by the
dotted curve. As shown in the figure, LDA projects the original two-dimensional
features onto a one-dimensional line (or linear discriminant), and compared to the
original distributions, the projected distributions show better separation between
the classes.

Back-Propagation Neural Networks

Among different types of supervised artificial neural network techniques available,
the back-propagation neural network (BNN) is the most commonly used one.
A BNN is a supervised learning technique with a basic neural network structure that
has three types of layers: an input layer, an output layer, and hidden layers [36–40].
One of the unique features of a BNN is that the errors calculated from the output
layer are back-propagated to train the hidden layers of the network. The size of the
input layer is determined by the dimensionality of the diagnostics problem, while
the size of the output layer changes based on the number of different classes of the

Linear discriminant y = w·x

Original x1
distributions

Projected y
distributions

Fig. 8.29 Schematic of a
two-class LDA
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diagnostics problem. The number of hidden layers and number of neurons vary
depending on the complexity of the problem. The model input is fed through the
input layer of the network and is connected to hidden layers by synaptic weights.
The number of hidden layers between the input and output layers can vary based on
the complexity of the problem. Each network layer is connected to the next layer
through synaptic weights in a hierarchical form. The training of the neural network
aims at learning the relationship between the input layer and the output layer by
adjusting the weights and bias values of each neuron in the network for each
training pattern. The BNN model is trained by optimizing the synaptic weights and
biases of all neurons until the maximum number of epochs is reached. The number
of epochs is defined as the number of times a training algorithm uses the entire
training data set. The trained BNN diagnostics model provides classification classes
as an outcome, when sensor data is provided as an input to the model.

Support Vector Machine

In addition to network-based learning techniques like BNN, kernel-based machine
learning techniques can also be used as member algorithms for health diagnostics.
Support vector machine (SVM) is one of the most popular kernel-based machine
learning techniques for classification. The following section briefly introduces SVM
for classification.

With the organized input data {(x1, c1), (x2, c2), …, (xm, cm)}, SVM constructs
the optimal separating hyper-plane that maximizes the margin between the sepa-
rating hyper-plane and the data [37, 41–52]. Without any loss of generality, con-
sider a two-class case for which the optimal separating hyper-plane and the
maximum margin are shown in Fig. 8.30. For the linearly separable, two-class
SVM shown in Fig. 8.30, the optimal hyper-plane separating the data can be
expressed as

y xð Þ ¼ wT � xþ b ¼ 0 ð8:10Þ

Margin

Class 1

Class 2

Separating 
Hyper-Plane

Support
Vectors

Fig. 8.30 Schematic of a
two-class SVM

268 8 Time-Dependent Reliability Analysis in Operation …



www.manaraa.com

where w is a normal vector that is perpendicular to the hyper-plane and b is the
offset of the hyper-plane. The parameter b/||w|| determines the offset of the
hyper-plane from the origin along the normal vector w. The learning of SVM
optimizes w and b in order to maximize the margin (or distance) between the
parallel hyper-planes that are as far apart as possible while still separating the data,
as shown in Fig. 8.30.

The optimization problem will eventually yield a set of optimized w and b that
define different classification margins [42]. The optimization problem and the
corresponding hyper-plane constraint for non-linear separable classes can be for-
mulated as

minimize 1
2w

TwþC
Pm
i¼1

ni

subject to yi wT � xi þ bð Þ� 1� ni
ni � 0; i ¼ 1; 2; . . .;m

ð8:11Þ

where the regularization parameter C specifies the error penalty and ni is a slack
variable defining the error. If the Lagrangian multipliers are introduced, the opti-
mization problem in Eq. (8.11) is transformed to a dual-quadratic optimization
problem and expressed as

minimize LD¼
Pm
i¼1

ai � 1
2

Pm
i¼1

Pm
j¼1

aiajyiyjxi � xj

subject to
Pm
i¼1

aiyi ¼ 0
ð8:12Þ

After solving the optimization problem shown above, the solution of w can be
expressed as

w ¼
Xm
i¼1

aiyixi ð8:13Þ

During the test phase, we determine on which side of the separating hyper-plane
a test instance x lies and assign the corresponding class. The decision function can
be expressed mathematically as sgn(wT�x + b). Thus, the diagnostic SVM results
provide different classification classes as a solution when a set of preprocessed
sensor data is provided as an input.

Unsupervised Fault Classification

Mahalanobis Distance

Unsupervised statistical inference can be used for classifying health-relevant input
features into different HSs based on their relative statistical distances. The
Mahalanobis distance classifier is one of these classification techniques. In statistics,
the MD is a distance measure based on the correlations between variables, by which
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different patterns can be identified and analyzed. The MD gauges the similarity of an
unknown sample set to a known one. Unlike the Euclidean distance method, the MD
considers the correlations of the data set and is scale-invariant. The MD measure
shows the degree of dissimilarity between the measured data point xf and a reference
training set (l) with the covariance matrix S, as shown in Eq. (8.14).

D xf
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xf � lf
� �TS�1

f xf � lf
� �q

ð8:14Þ

where xf = (x1, x2, …, xF)
T is a F-dimensional data vector, and l and S are

respectively the mean vector and covariance matrix of the reference training data
set. The MD is often used to detect outliers within multi-dimensional input samples,
especially in the development of linear regression models. Due to its straightfor-
wardness and ease of implementation, the MD model has been used for health
diagnostics. MD health diagnostics considers the correlation between different input
variables and determines the system HS based on the minimum MD values of the
testing sample, compared to training samples from different HSs. Note that, in
Sect. 8.2.1, MD is employed to classify different HSs for the development of sensor
networks for health monitoring.

Self-organizing Maps

The methodologies discussed above were different machine learning processes
where the target HS classes are known. If the different health conditions, and their
functional relationships with the system input parameters, are not clearly known,
possible health conditions of the system can then be determined using an unsu-
pervised learning process that segregates the data based on the possible health
conditions. The self-organizing map (SOM) is a type of artificial neural network
that is trained using unsupervised learning to produce a two-dimensional discretized
representation of the input space of the training samples. The SOM uses a neigh-
borhood function to preserve the topological properties of the input space and
determine the closest unit distance to the input vector [17]; this is then used to
construct class boundaries graphically on a two-dimensional map. The SOM
training utilizes competitive learning. When a training example is fed to the SOM,
its Euclidean distance to all weight vectors is computed and the neuron with the
weight vector most similar to the input vector x will be identified as the best
matching unit (BMU). The weights of the BMU and neurons close to it in the SOM
lattice are adjusted towards the input vector. Moreover, the magnitude of the change
decreases with time and distance from the BMU. The weight vectors of the BMU
and its topological neighbors are fine-tuned to move closer to the input vector space
[36]. The learning rule for updating a weight vector w can be expressed as:

wiðtþ 1Þ ¼ wiðtÞþ aðtÞ hðnBMU ; ni; tÞðx� wiðtÞÞ ð8:15Þ
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where wi(t + 1) is the updated weight vector, wi(t) is the weight vector from the
previous iteration, a(t) is the monotonically decreasing learning coefficient with
0 < a < 1, and h(nBMU, ni, t) is the neighborhood function that decreases mono-
tonically with an increase in the distance between the BMU nBMU and the neuron ni
in the lattice. The Gaussian function is a common choice for the neighborhood
function. Regardless of the function form, the h(nBMU, ni, t) decreases over the
training time. During the training process, one sample pattern is chosen from the
input data X arbitrarily, and the distance between the sample point and the initial
weight vector of the SOM is determined using the distance measure. Thus, through
the learning, the input data are transformed into different HS clusters, and the
overlapping of the different clusters is determined to be the misclassification.

Health Index

Successful implementation of health prognostics (see Sect. 8.4) often requires the
derivation of a single health measure that quantifies the health condition of an
operating system. This health measure is called a health index. In general, health
indices can be categorized into two types: (i) a Physics Health Index (PHI) or (ii) a
Virtual Health Index (VHI).

Physics Health Index (PHI)

A PHI uses a dominant physical signal as a direct health measure and is thus
applicable only if sensor signals are directly related to physics-of-failure. In the
literature, most engineering applications of health prognostics are based on various
PHIs, such as the battery impedance [47], the magnitude of the vibration signal
[48], and the radio frequency (RF) impedance [49]. However, the application of a
PHI is limited to cases where sensor signals directly related to physics-of-failure are
available. Mapping of a multitude of heterogeneous sensor signals to a dominant
physical signal is getting more and more difficult with the growing complexity of
engineered systems and sensor networks.

Virtual Health Index (VHI)

A VHI is applicable even if sensor signals are not directly related to system
physics-of-failure. VHIs have a potential to overcome the limitation of PHIs
described above. Multi-dimensional sensor signals can be transformed into a
one-dimensional VHI using advanced data processing techniques, such as weighted
averaging methods [43], the Mahalanobis distance [44], flux-based methods [45], or
a linear data transformation method [46]. Let’s consider the linear data transfor-
mation method. Suppose there are two multi-dimensional sensor data sets that
represent the system failed and system healthy states, Q0 of M0 � D matrix and Q1

of M1 � D matrix, respectively. M0 and M1 are the data sizes for system failed and
system healthy states, respectively, and D is the dimension of each data set. With
these two data matrices, a transformation matrix T can be obtained to transform the
multi-dimensional sensor signals into a one-dimensional VHI as
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T ¼ QTQ
� ��1

QTSoff ð8:16Þ

where Q = [Q0; Q1], Soff = [S0, S1]
T, S0 is a 1 � M0 zero vector and S1 is a

1 � M1 unity vector. This transformation matrix T can transform any
multi-dimensional signals from the offline learning or online prediction process to
the normalized VHI as H = Qoff � T or H = Qon � T, where Qoff and Qon are the
offline and online multi-dimensional sensor data sets, respectively. If we assume the
data sizes for Qoff and Qon are, respectively, Mon and Moff (i.e., Qoff of
Moff � D matrix and Qon ofMon � D matrix), H will be a column vector of the size
Moff or Mon. The VHI can also be denoted as h(ti) for i = 1, …, M (for the offline
case) or for i = 1, …, Mon (for the online case), varying approximately between 0
and 1.

8.4 The Health Prognostics Function

Upon the detection and classification of a fault via the health reasoning function, the
health prognostics function predicts the time remaining before the fault progresses
to an unacceptable level, in other words, the remaining useful life (RUL).
Figure 8.31 shows a typical paradigm of the health prognostics function, which first
utilizes the sensor signal to produce the system degradation signal through signal
processing and then leverages the degradation signal to perform diagnostics of the
system’s current health condition and further predict the system’s RUL and
reliability.

In general, two categories of approaches have been developed that enable
continuous updating of system degradation and RUL distribution: (i) model-based
approaches, and (ii) data-driven approaches. These two approaches are graphically
compared in Fig. 8.32. The application of general, model-based prognostic
approaches relies on the understanding of system physics-of-failure (PoF) and
underlying system degradation models. The basic idea is to identify the parameters
of the PoF-based degradation model in the online process. As practical engineered
systems generally consist of multiple components with multiple failure modes,
understanding all potential physics-of-failure and their interactions in a complex
system is almost impossible. In such cases, the data-driven approaches for system
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health prognostics are more desirable; these data-driven approaches are mainly
based on massive sensor data with a lessened requirement for knowledge of
inherent system failure mechanisms. Data-driven prognostic approaches generally
require sensor feature extraction and statistical pattern recognition for the offline
training process, and interpolation, extrapolation, or machine learning for online life
prediction.

8.4.1 Model-Based Prognostics

Model-based prognostic approaches use PoF-based models to represent the
degradation behavior of a system for RUL prediction. PoF-based models have been
investigated in the literature to capture various degradation phenomena in engi-
neered systems, such as the side reaction in lithium-ion batteries [53, 54] and
damage-based crack propagation in wire bond interconnects in power electronics
[55, 56]. Sensor data contain rich information about system degradation behavior,
and model-based prognostics incorporates new sensor information to update
PoF-based models. Among the various approaches available to incorporate these
evolving sensor data, Bayesian updating is the most widely used. Existing Bayesian
updating approaches can be classified into two categories: simulation approaches
[57–65] and analytical approaches [66–68]. Commonly used simulation approaches
include iterative Markov Chain Monte Carlo (MCMC) methods (e.g.,
Metropolis-Hastings [62, 63] and Gibbs Sampling [64, 65]), and non-iterative
methods (e.g., importance sampling [57–59] and rejection sampling [60, 61]). In the
following sections, an iterative MCMC method and a non-iterative importance
sampling method will be described in the context of model-based prognostics.

(a) (b)
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Fig. 8.32 Model-based (a) and data-driven (b) prognostics
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Iterative Bayesian Updating with Markov Chain Monte Carlo (MCMC)

Figure 8.33 illustrates the use of a Markov-Chain Monte Carlo (MCMC) method
for non-conjugate Bayesian updating of a degradation model and RUL distribution.
In this example, the system degradation model takes the following exponential form

SðtiÞ ¼ S0 þ d � exp at2i þ bti þ e tið Þ � r2

2

� �
ð8:17Þ

where S(ti) represents the degradation signal at time ti; S0 is a known constant; d, a,
and b are stochastic model parameters representing the uncertainty of generator
operating conditions, and e is a random error term modeling possible sensor noise
that follows a zero-mean Gaussian distribution with standard deviation r.

Non-iterative Bayesian Updating with Particle Filter

To make the discussion more concrete, consider a dynamic nonlinear discrete-time
system described by a state-space model. In this context, a simplified state-space
model is defined as

Transition: xi ¼ f xi�1ð Þþ ui
Measurement: yi ¼ g xið Þþ vi

ð8:18Þ

where xi is the vector of (hidden) system states at time ti = i�Δt, Δt is a fixed time
step between two adjacent measurement points, and i is the index of the mea-
surement time step, respectively; yi is the vector of system observations (or mea-
surements); and ui is the vector of process noise for the states; vi is the vector of
measurement noise; and f(�) and g(�) are the state transition and measurement
functions, respectively. With the system defined, we aim to infer the system states
x from the noisy observations y.

Sensor 
signal

Residual life

Fig. 8.33 Updating of a degradation model and RUL distribution
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Fundamentals of Particle Filter

In a Bayesian framework, the posterior probability distribution of the states given
the past observations, p(xk|y1:k), constitutes a statistical solution to the inference
problem described in Eq. (8.18). Recursive Bayesian filtering enables a continuous
update of the posterior distribution with new observations. One way to implement
recursive Bayesian filtering is by using Kalman filtering, where all the variables in
the dynamic system are assumed to follow Gaussian distributions whose statistical
information can be fully described by the means and covariance matrix. The most
widely used methods for Kalman filtering include Kalman filter [69], extended
Kalman filter [70, 71], and unscented Kalman filter [72]. If the Gaussian assump-
tion does not hold, or the state transition or measurement function is not explicitly
known, simulation-based methods, such as particle filters (or the SMC methods)
[73, 74] are more suitable for state estimation. Unlike Kalman filters, particle filters
do not rely on the Gaussian assumption. Instead, they approximate the posterior
distribution of the states based on a set of particles and their associated weights,
both of which are continuously updated as new observations arrive, expressed as

p xijy1:ið Þ �
XNP

i¼1

wj
i d xi � x j

i

� � ð8:19Þ

where x j
i

	 
NP

j¼1 and wj
i

	 
NP

j¼1 are the particles and weights estimated at the ith

measurement time step, respectively; NP is the number of particles; and d is the
Dirac delta function. The standard particle filter algorithm follows a standard
procedure of sequential importance sampling and resampling (SISR) to recursively
update the particles and their associated weights [73]:

(1) Initialization (i = 0)
For j = 1, 2, …, NP, randomly draw state samples x0 j from the prior distri-
bution p(x0).

(2) For i = 1, 2, …

(a) Importance Sampling
For j = 1, 2, …, NP, randomly draw samples from the proposed importance
density xji � q xijxj0:i�1; y1:i

� �
. The standard SISR particle filter employs the

so-called transmission prior distribution q xijx j
0:i�1; y1:i

� � ¼ p xijx j
i�1

� �
.

For j = 1, 2, …, NP, evaluate the importance weights

wj
i ¼ wj

i�1

p yijx j
i

� �
p x j

i jx j
i�1

� �
q xijx j

0:i�1; y1:i
� � ð8:20Þ

For j = 1, 2, …, NP, normalize the importance weights
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~wj
i ¼ wj

i

XNP

j¼1

wj
i

" #�1

ð8:21Þ

(b) Selection (Resampling)

Multiply/suppress samples x j
i

	 
NP

j¼1 with respect to high/low importance

weights to obtain NP random samples x j
i

	 
NP

j¼1 with equal weights NP
−1.

(c) Posterior Distribution Approximation using Eq. (8.19).

Application of Particle Filter to RUL Prediction

Next, consider the application of a particle filter to predict the RUL of an engi-
neered system. Take a lithium-ion (Li-ion) rechargeable battery as an example [75].
Capacity fade over time/cycling is the primary degradation mode of a Li-ion battery
cell. Given the readily available measurements (i.e., voltage, current, and temper-
ature) from a cell operating under a typical use condition and a discrete-time state
space model that describes the capacity fade behavior of the cell, the task of Li-ion
battery prognostics is to estimate the capacity of the cell at every charge/discharge
cycle and predict its RUL, i.e., how long the cell is expected to operate before its
capacity falls below an unacceptable level (or a failure threshold). Model-based
prognostics of a Li-ion battery is illustrated in Fig. 8.34, where a battery cell has
been cycled (charged/discharged) for 300 times and we want to predict the RUL of
this cell. This online task of RUL prediction can be accomplished in two sequential
steps: (1) capacity estimation, which infers the capacity of the cell from the voltage,
current, and temperature at every charge/discharge cycle; and (2) model updating
and extrapolation, which updates an empirical capacity fade model with the
capacity measurements (i.e., the capacity estimates from Step 1) and extrapolates
the updated model to predict future capacity fade and RUL. The rest of this section
presents the application of particle filter to accomplish the second step of this
online task.

Fig. 8.34 Schematic of
model-based prognostics of
Li-ion battery (for simplicity,
the updating of capacity fade
model at the current cycle is
not shown)
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Assume the underlying capacity fade model can be expressed as a hybrid of
linear and exponential functions

ci ¼ Ci

C0
¼ 1� a 1� exp �kið Þ½ � � bi ð8:22Þ

where Ci is the capacity of the cell at the ith cycle, C0 is the initial capacity, a is the
coefficient of the exponential component of capacity fade, k is the exponential
capacity fade rate, b is the coefficient of the linear component of capacity fade, and
ci is the normalized capacity at the ith cycle. Researchers have reported that the
exponential function captures the active material loss [76] and the hybrid of the
linear and exponential functions was reported to provide a good fit to three years’
cycling data [77]. Here, we treat the normalized capacity c and capacity fade rates a,
k, and b as the state variables, i.e., x 	 [c, a, k, b]T. The system transition and
measurement functions can then be written as [75].

Transition: ci ¼ 1� ai�1 1� exp �ki�1ið Þ½ � � bi�1iþ ui;
ai ¼ ai�1 þ r1;i; ki ¼ ki�1 þ r2;i; bi ¼ bi�1 þ r3;i

Measurement: yi ¼ ci þ vi
ð8:23Þ

Here, yi is the capacity measurement (or estimate) at the ith cycle; and u, r1, r2,
r3, and v are the Gaussian noise variables with zero means.

To perform the RUL prediction, we learn and track the capacity fade behavior of
the cell at every charge/discharge cycle. The learning and tracking are done by
updating the parameters a, k, and b of the capacity fade model in Eq. (8.22) with
the capacity measurement via the use of particle filter. After the resampling step of
particle filter at the ith cycle, the posterior probability distribution of the normalized
capacity is approximated as

p cijy1:ið Þ � 1
NP

XNP

i¼1

d ci � c ji
� � ð8:24Þ

where ci
j is the jth resampled particle of ci. The normalized capacity l cycles in the

future can be predicted by extrapolating the capacity fade model with the updated
parameters, expressed as

p ciþ ljy1:ið Þ � 1
NP

XNP

i¼1

d ciþ l � c jiþ l

� � ð8:25Þ

where

c jiþ l ¼ 1� a j
i 1� exp �k j

i iþ lð Þ� �� �� b j
i iþ lð Þ ð8:26Þ

Here, we define the normalized capacity at 78.5% of the failure threshold. Then the
RUL (in cycles) can be obtained for each particle as the number of cycles between
the current cycle i and the end-of-life (EOL) cycle
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L j
i ¼ root a j

i 1� exp �k j
i i

� �� �þ b j
i i ¼ 0:215

� �� i ð8:27Þ

Finally, the RUL distribution can be built based on these particles, expressed as

p Lijy1:ið Þ � 1
NP

XNP

i¼1

d Li � L j
i

� � ð8:28Þ

This completes the derivation of the RUL distribution.
It can be observed from this application that as a battery cell degrades every

charge/discharge cycle, we feed in the capacity measurement for that cycle, which
then allows us to “on the fly” learn how the battery is degrading by updating an
underlying capacity fade model. Once the capacity fade model is updated, we can
then extrapolate the model to the failure threshold for calculating the RUL. This in
fact can be viewed as the general procedure of model-based prognostics.

8.4.2 Data-Driven Prognostics

Data-driven prognostic techniques utilize monitored operational data related to
system health. The major advantage of data-driven approaches is that they can be
deployed more quickly and often at a lower cost, as compared to other approaches.
In addition, data-driven techniques can provide system-wide coverage. The prin-
cipal disadvantage is that data-driven approaches may have wider confidence
intervals than other approaches and they require a substantial amount of data for
training. Three approaches can be used for online RUL prediction in data-driven
approaches: interpolation, extrapolation, and machine learning.

Interpolation-Based Approach

The basic idea of this data-driven prognostic approach is to compare the similarity
between the partial degradation data (hr) from an online1 system unit and the
offline2 health degradation curve (hp) and to determine a time-scale initial health
condition (T0) through an optimum fitting [46, 78, 79]. As shown in Fig. 8.35, the
optimum fitting process basically moves the online health index data (or normalized
degradation data) hr along the time axis of a predictive health degradation curve hp
to find the optimum time-scale initial health state (T0) that best matches hr with hp
with respect to the sum of squared differences (SSD).

1The term “online” indicates a state where a (testing) system unit is operating in the field and its
RUL is unknown and needs to be predicted.
2The term “offline” indicates a state where a (training) system unit is operating in the lab or field
and often runs to failure (thus, its RUL at any time is known) prior to the operation of any system
units online.
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This optimum fitting can be formulated as

Minimize SSD ¼ PMs

j¼1
hr tj
� �� hp tj þ T0

� �� �2
subject to T0 2 ½0; L� Dt�

ð8:29Þ

where hr(tj) and hp(tj) are the online and offline health index data at tj, respectively;
Ms is the length of the online health index data; T0 is the time-scale initial health
condition; Dt is the time span (= tMs − t1) of the online health index data; and L is
the time span of a predictive health degradation curve, i.e., the life span of an offline
system unit. Once T0 is determined from the optimization (Eq. 8.29), the projected
RUL of an online system unit based on a given predictive health degradation curve
can be calculated as

RUL ¼ L� Dt � T0 ð8:30Þ

Repeating the optimum fitting process on K predictive health degradation curves
from K different offline system units gives K RUL estimates (Li

P for i = 1, …, K).
Then, the predictive RUL is a weighted sum in terms of different projected RULs
(Li for i = 1, …, K) of an online unit as

L ¼ 1
W

XK
i¼1

Wi � Lið Þ where W ¼
XK
i¼1

Wi ð8:31Þ

where Li is the projected RUL on the ith offline predictive health degradation curve
and Wi is the ith similarity weight. A similarity weight Wi can be defined as the
inverse of the corresponding SSDi, i.e., Wi= (SSDi)

−1. This definition ensures that a
greater similarity gives a greater weight.
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Fig. 8.35 Similarity-based
interpolation for RUL
prediction
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Extrapolation-Based Approach

Unlike the interpolation-based approach, the extrapolation-based approach employs
the training data set not for comparison with the testing data set but rather for
obtaining prior distributions of the degradation model parameters. The testing data
set is then used to update these prior distributions. An RUL estimate can be
obtained by extrapolating the updated degradation model to a predefined failure
threshold (see Fig. 8.36). Bayesian linear regression, Kalman filter, or particle filter
can be employed for construction and updating of the degradation model.

Machine Learning-Based Approach

In contrast to the interpolation- or extrapolation-based approaches, the machine
learning-based approach does not involve any visible manipulation of the offline
and online data; rather, it requires the training of a prognostics model using the
offline data. One such model is the recurrent neural network (RNN) model, which is
capable of learning nonlinear dynamic temporal behavior due to the use of an
internal state and feedback. A first-order, simple RNN is an example of multi-layer
perceptron (MLP) with feedback connections (see Fig. 8.37). The network is
composed of four layers, namely, the input layer I, recurrent layer R, context layer
C, and output layer O. Units of the input layer and the recurrent layer are fully
connected through the weights WRI, while units of the recurrent layer and output
layer are fully connected through the weights WOR. Through the recurrent weights
WRC, the time delay connections link current recurrent units R(t) with the context
units C(t) holding recurrent units R(t−1) in the previous time step. The net input of
the ith recurrent unit can be computed as

~R tð Þ
i ¼

X
j

WRI
ij I

tð Þ
j þ

X
j

WRC
ij R t�1ð Þ

j ð8:32Þ
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Fig. 8.36 Extrapolation-based RUL prediction
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Given the logistic sigmoid function as the activation function f, the output activity
of the ith recurrent unit can then be computed as

R tð Þ
i ¼ f ~R tð Þ

i

 �
¼ 1þ exp �~R tð Þ

i

 �h i�1
ð8:33Þ

The net input and output activity of the ith output unit can be computed, respec-
tively, as

~O tð Þ
i ¼

X
j

WOR
ij R tð Þ

j ð8:34Þ

and

O tð Þ
i ¼ f ~O tð Þ

i

 �
¼ 1þ exp �~O tð Þ

i

 �h i�1
ð8:35Þ

In health prognostics, the inputs to the RNN are the normalized sensor data set
QN and the outputs are the RULs associated with the data set. The RNN training
process calculates the gradients of network weights with respect to the network
performance and updates the network weights in search of the optimum weights
with the minimum prediction error.

Other machine learning techniques that can be used for health prognostics
include artificial intelligence-based techniques, feed-forward neural networks, the
decision tree method, support vector machine (SVM), relevance vector machine
(RVM), k-nearest neighbor (KNN) regression, fuzzy logic, and others.

(a) (b) 
Output layer O

Recurrent layer R

Input layer IContext layer R

Time delay
WOR

WRIWRC

…

WRC

O1 Ok O|O|… …

R1 Rj R|R|… …

I1 Ii I|I|… …
C1 Cj C|C|…

Time delay

WRI

WOR

Fig. 8.37 Simplified (a) and more detailed representation (b) of Elman’s simple RNN. Reprinted
(adapted) with permission from Ref. [79]
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Example 8.5 NASA Aircraft Engine Prognostics
The objective of the problem in this example is to predict the number of
remaining operational cycles before failure in the testing data set for a NASA
aircraft engine. The prognostics framework consists of the following func-
tions (see Fig. 8.38): (i) health sensing for sensor signal acquisition,
(ii) health reasoning for health index construction (feature extraction), and
(iii) a health prognostics function for interpolation-based RUL prediction.
These functions will be explained in detail in the following subsections.

Health Sensing Function

The data set used for this example is the one provided by the 2008
IEEE PHM Challenge problem. This data set consists of multivariate time
series signals that are collected from a NASA aircraft engine dynamic sim-
ulation process (see Fig. 8.39). Each time series signal comes from a different
degradation instance of the dynamic simulation of the same engine system.
The data for each cycle of each unit include the unit ID, cycle index, 3 values
for an operational setting and 21 values for 21 sensor measurements. The
sensor data were contaminated with measurement noise. In addition, different
engine units start with different initial health conditions and manufacturing
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Fig. 8.38 The three main PHM functions for NASA aircraft engine prognostics

Fig. 8.39 NASA aircraft engine and C-MAPSS simulation model
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variations that are unknown. The 21 sensor signals were obtained from six
different operation regimes. The whole data set was divided into training and
testing subsets, each of which consists of 218 engine units.

Health Reasoning Function

To account for the different initial degradation conditions, an adjusted cycle
index is proposed as Cadj = C − Cf, where C is the operational cycle of the
training data for an engine unit and Cf is the cycle-to-failure of an engine unit.
A cycle index 0 indicates engine unit failure; whereas, negative cycle indices
are realized prior to failure. Among the 21 sensor signals, some signals
contain no or little degradation information for engine units; other signals do
contain degradation information. To improve the RUL prediction accuracy
and efficiency, seven relevant signals (2, 3, 4, 7, 11, 12, and 15) were selected
by screening all 21 sensor signals according to the degradation behaviors.

Based on the seven sensor signals, a normalized health index was con-
structed to represent the health degradation process of the engine. This nor-
malization process is realized by using a linear transformation with the sensor
data representing system failure and system healthy states. The dots in
Fig. 8.40 represent the normalized health index data obtained from the
training data set of an offline engine unit.

The randomness of the health index data is mainly due to the measurement
noise from the signals. Thus, a stochastic regression technique, namely rel-
evance vector machine (RVM) regression, can be used to model the VHI data
in a stochastic manner. The RVM is a Bayesian representation of a gener-
alized sparse linear model, which shares the same functional form as the

Fig. 8.40 VHI and the RVM regression

8.4 The Health Prognostics Function 283



www.manaraa.com

support vector machine (SVM). In this example, the linear spline kernel
function was used as a basis function for the RVM. The RVM was used to
build the predictive health degradation curves (hi

p(t), i = 1, …, 218) for 218
offline engine units. The regression model gives both the mean and the
variation of the predictive health degradation curve, as shown in Fig. 8.40.
These predictive health degradation curves for the offline units altogether
construct the background health knowledge, which characterizes the system
degradation behavior. Later, this background knowledge can be used for
modeling the predictive RUL distributions of online engine units.
Degradation curves built for the offline units are exemplified in Fig. 8.41.

Health Prognostics Function

The online prediction process employed the testing data set obtained from
218 online system units. As explained earlier, the optimum fitting was
employed to determine a time-scale initial health degradation state (T0) with
the training data set for an online engine unit, while minimizing the SSE
between the online health data h(tj) and the predictive health degradation data
hp(tj), as shown in Fig. 8.42. It should be noted that the offline learning
process generates different predictive health degradation curves from
K identical offline units. Repeating this process provided different projected
RULs (RULi for i = 1, …, 218) on different predictive health degradation
curves. The projected RULs can be used to predict the RUL of an online unit
through a weighted-sum formulation.

From 218 offline engine units, the same number of the predictive health
degradation curves and projected RULs was obtained for each online engine
unit. Likewise, the same number of similarity weights was sought for each
online engine unit, based on the inverse of the SSE. A weighted-sum

Fig. 8.41 Background degradation knowledge from the RVM
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Fig. 8.42 Extrapolation-based RUL prediction

Fig. 8.43 Predicted RUL histograms with true RULs for a units 1 and 2, and b units 3 and 4
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formulation was then used to predict the RUL for each online engine unit as a
function of the projected RULs, while considering the first 50 largest simi-
larity weights. Note that hi

p(ti) are stochastically modeled using RVM
regression. Thus, the resulting similarity weights were modeled in a statistical
manner, as was the RUL of the online unit. Using the mean and covariance
matrices of the relevance vector coefficients for the RVM regression, the
random samples of the coefficients result in the random samples of the
similarity weights for the projected RULs of the engine unit. The randomness
of the similarity weights and projected RULs is then propagated to the pre-
dictive RUL of the engine unit through the weighted-sum formulation.
Figure 8.43 shows the RUL histogram and the true value with the testing data
set for the first four online engine units.

8.4.3 Uncertainty Management in Health Prognostics

Uncertainty management is of great importance for health prognostics as it
(i) identifies sources of uncertainty that significantly contribute to the uncertainty in
the RUL prediction and (ii) provides decision-makers with statistical information
about the predicted RULs. Uncertainty management in health prognostics has been
discussed in various publications [78–81]. The three major uncertainty-related
activities are quantification, propagation, and management [82]. These activities are
detailed in the following subsections.

Uncertainty Quantification

This first activity aims to identify and characterize the various sources of uncer-
tainty that may affect the RUL prediction. It is important that these sources of
uncertainty be accounted for in models and algorithms for health prognostics. The
sources of uncertainty often present in PHM applications include (i) sensor noise
and bias, (ii) inadequacy of the sensor network in health sensing, (iii) signal fil-
tering and resampling, (iv) data reduction (loss of information resulting from
feature extraction and selection) in health reasoning, and (v) future usage uncer-
tainty and algorithm inadequacy in health prognostics. Figure 8.44 shows various
sources of uncertainty in each of the PHM functions. Often, uncertainty quan-
tification characterizes each of these uncertainties using probability distributions
and these quantified uncertainties facilitate subsequent activity, i.e., uncertainty
propagation.

Uncertainty Propagation

The second activity, namely uncertainty propagation, accounts for all quantified
uncertainties in health prognostics. Specifically, it propagates the uncertainties
associated with the PHM functions through a set of models and algorithms to
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estimate the total uncertainties in future states and in the RUL. Figure 8.44 shows
uncertainty propagation from the PHM function at one level to the one at the next
level. An arbitrary assignment of the distribution type to RUL is often erroneous;
thus, the true probability distribution of the RUL needs to be estimated through
rigorous uncertainty propagation of the various sources of uncertainty through the
models and algorithms. Such a distribution may not share similarity with any of the
commonly used distribution types. It is important to understand that uncertainty
propagation is significantly important and challenging in the context of prognostics,
since the focus is on predicting the future unknown behavior of a system.

Uncertainty Management

The third activity is uncertainty management, and it has two primary focuses. First,
it focuses on reducing the uncertainty in the predicted RUL and increasing the
confidence in condition-based maintenance during real-time operation. This can be
done by partitioning uncertainty to quantify the contributions of uncertainties from
individual sources to the uncertainty in the predicted RUL. For example, if sensor
noise and bias are identified to be significant contributors to the uncertainty in the
RUL prediction, a better RUL prediction (with less uncertainty) can be achieved by
improving the quality of the sensors. The second focus of uncertainty management
is on addressing how uncertainty-related information can assist in making decisions
about when and how to maintain the system. Since the uncertainty in the RUL
prediction cannot be eliminated, it is important to take into account the uncertainty
and make optimum decisions under acceptable risk.
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Fig. 8.44 Sources of uncertainty and uncertainty propagation in PHM
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8.5 PHM Demonstration: Prognostics of Electric Cooling
Fan

This demonstration applies a data-driven prognostic approach, similarity-based
interpolation (see Sect. 8.4.2), to the health prognostics of electronic cooling fan.
Cooling fans are one of the most critical parts in most electronic products and in
cooling towers of many chemical plants. This demonstration aims to illustrate
data-driven prognostics with electric cooling fan units and has two essential
elements:

(1) MATLAB .mat files (DuFan.mat, DuFan_test.mat, and RUL_True_Test.mat)
with the vibration-based health index data of 20 training fan units (DuFan.mat)
that have run to failure and 24 testing fan units (DuFan_test.mat) whose RULs
are assumed to be unknown and need to be estimated and whose actual RULs
are in fact known (RUL_True_Test.mat) and can be used as the ground truth for
evaluation of prognostic accuracy;

(2) MATLAB.m files (SBI_FanDemo.m, Life_Pred_SBI_FanDemo.m,
RVM_FanDemo.m, and Kernel_Linearspline_FanDemo.m) with the codes for
predicting the RULs of the 24 testing fan units.

(i) SBI_FanDemo.m: main code that contains all steps for data-driven
prognostics with relevance vector machine (offline training) and
similarity-based interpolation (online prediction).

(ii) Life_Pred_SBI_FanDemo.m: supporting code that implements online
prediction based on similarity-based interpolation.

(iii) RVM_FanDemo.m: supporting code that contains a simple implemen-
tation of relevance vector machine regression (a more sophisticated and
stable version of relevance vector machine can be found at the following
web link:
http://www.miketipping.com/downloads.htm).

(iv) Kernel_Linearspline_FanDemo.m: supporting code that builds a linear
spline kernel function for the implementation of relevance vector
machine.

Arranging the two .mat files and four .m files in the same folder and running the
main code SBI_FanDemo.m in MATLAB should allow this PHM demonstration to
be executed. In what follows, the basics and MATLAB implementations of offline
training and online prediction are briefly described.

Feature Extraction

This demonstration involves the use of the RMS of the vibration spectral responses
at the first five resonance frequencies. It first extracts the RMS from the fan
vibration signals as the relevant feature and then normalizes the feature to derive a
health index for the electric cooling fan prognostics. Figure 8.45 shows the health
index data of three fan units to demonstrate the degradation behavior of these units.
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The vibration-based health index is highly random and non-monotonic, but grad-
ually increases as the bearing in the fan degrades over time. For the electric cooling
fan prognostics, the first 20 fan units are employed for the training dataset in the
offline training (Step 1) process, while the rest are used to produce the testing
dataset in the online prediction (Step 2) process.

In this demonstration, the vibration-based health index data of the 20 training
and 24 testing fan units are pre-computed and stored in the MATLAB.mat files,
DuFan.mat and DuFan_test.mat. Step 0.1 in the main code SBI_FanDemo loads
these pre-computed training and testing data sets.

He
al

th
 In

de
x

Unit ID Time (min)

Fig. 8.45 Sample
degradation signals from
electric cooling fan testing.
Reprinted (adapted) with
permission from Ref. [79]

%% Step 0.1: Load training and testing data sets

load(′DuFan.mat′,′DuFan′) % Load data ′DuFan′ of 24 training

% units that have run to failure.

% Data from one fan unit consist of

% time in min (Column 1) and health

% index (Column 2). One cycle is

% defined as 10 min. Health index is

% defined as RMS of the vibration

% spectral responses at the first

five

% resonance frequencies

load(′DuFan_test.mat′,′DuFan_test′) % Load data ′DuFan_test′ of 24

testing

% units whose RULs are unknown

and need

% to be predicted. ′DuFan_test′

% contains partial

degradation data

% from the testing units.
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Health Prognostics

RUL prediction with similarity-based interpolation involves two sequential
steps, offline training and online prediction. In offline training, we have the
degradation data from the 20 offline units. An offline unit is tested to failure in the
lab. So we have a complete degradation trajectory from beginning of life (BOL) to
end of life (EOL). We overlay the degradation data from the 20 units on the same
graph (“Offline data” in Fig. 8.46). The intent of offline training is to construct a
fitted curve to represent the trajectory.

In this demonstration, machine learning-based regression (i.e., RVM regression)
is used to fit a degradation curve to the data for each offline unit. By doing so, we
transform these offline data into 20 degradation curves, as shown in Fig. 8.46
(“Background degradation curves”). These curves will be used to predict the RUL
of an online unit. The lines of code for Step 1 in the MATLAB main code
SBI_FanDemo.m implement this curve fitting on all 20 offline training units with
RVM regression.

%% Step 1: Offline training (to build offline degradation curves)

nTrain = length(D_deg);

for ki = 1:nTrain

fprintf(′\n Currently running RVM regression on training unit %d

\n′,ki);

%% Step 1.1: Extract training data from training unit ki

x = D_deg{ki}(:,1);

t = D_deg{ki}(:,2);
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Fig. 8.46 Offline training (Step 1) for electric cooling fan prognostics
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%% Step 1.2: Train an RVM regression model with extracted Data

[*,mou,*] = RVM_FanDemo(x,t);

MUW{ki} = mou;

clear x t afa mou cov

end

Unlike an offline unit, an online unit is operating in the field and has not failed
yet. So we only get partial degradation data (see the blue dots in Fig. 8.47) from the
online unit. Now, we have two pieces of information: (1) the degradation curves
from the offline units; and (2) the partial degradation data from the online unit. The
objective is to predict the RUL of this online unit.

Online RUL prediction using similarity-based interpolation is implemented in
the MATLAB supporting code Life_Pred_SBI_FanDemo.m. In the implementa-
tion, an outer “for” loop is used to run RUL prediction on all testing units (e.g., 24
testing fan units in this demonstration) and an inner “for” loop is used to run RUL
prediction of each testing unit based on all training units (e.g., 20 training fan units
in this demonstration).

% Run an outer for loop to predict RULs for all testing units

for ku = 1:nTest

fprintf(′\n\n Currently making prediction for testing unit %d \n

\n′,ku);

% Run an inner for loop over all training units

for ki = 1:nTrain

…

end

…

end

Two steps are involved in RUL prediction of a testing unit. First, we predict the
RUL of the online unit based on the 1st offline unit. The prediction involves the
optimization process in Eq. (8.29). In this process, we move the online data along
the time axis to find the best match with the degradation curve. After the optimum
match is found, we will have a predicted life and a sum squared error of this match.
Repeating this process for all the other offline units, we can get 20 life predictions.
The inner “for” loop in the MATLAB supporting code Life_Pred_SBI_FanDemo.m
implements this first step.
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Fig. 8.47 Online prediction (Step 2) for electric cooling fan prognostics

for ki = 1:nTrain

% Predict RUL of testing unit ku using data from training unit ki

L1 = size(D_deg_test{ku},1); % Length of testing data

L2 = size(D_deg{ki},1); % Length of training data

Wei_Rul = [];

X = D_deg{ki}(:,1); % Extract cycle index data of training

% unit ki

W = MUW{ki}; % Extract RVM model weights of training

% unit ki

if L1 < L2

ndif = L2-L1;

% Use matrix operation to accelerate computation

xpool = (1-L2):1:0; % Define adjusted cycle index of

% training unit ki

% Construct design matrix Phi and calcuate prediction by RVM

% regression model

Phi_pred = Kernel_Linearspline_FanDemo(xpool,X);

T_pred = Phi_pred*W;
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% List all ranges of adjusted cycle index of testing unit ku

IndexExp = repmat(1:1:L1,ndif+1,1) + repmat((0:1:ndif)′,1,L1);

T_predExp = T_pred(IndexExp);

% Compute sum of squared differences (i.e., Weight) for each

% range of adjusted cycle index of testing unit ku

DataExp = repmat(D_deg_test{ku}(:,2)′,ndif+1,1);

Weight = sum((T_predExp-DataExp).^2,2);

RUL = ndif + 1 - [1:1:ndif+1]′;

Wei_Rul = [Weight, RUL];

clear T_predExp DataExp T_pred Fei_pred Weight RUL

end

if isempty(Wei_Rul)==0

% Identify RUL that produces the best match between online data

% (testing unit ku) and offline degradation curve (training

% unit ki)

L_Pred = min(Wei_Rul(:,1));

Pred_Results(ki,:) = Wei_Rul(Wei_Rul(:,1)==L_Pred,:);

clear Wei_Rul

else

Pred_Results(ki,:) = [-1,-1];

end

end

RUL_Prediction{ku} = Pred_Results;

Next, we aggregate all the 20 predictions in a weighted-sum form (see Eq. 8.31).
This gives the final predicted RUL. The weight is inversely proportional to the error
of the match. That is, a larger weight will be assigned if the degradation curve of a
certain offline unit shows better agreement with the online data. The lines of code
right below the inner “for” loop in the MATLAB supporting code
Life_Pred_SBI_FanDemo.m implement this second step.

di_nn = find(RUL_Prediction{ku}(:,2) > -1);

if isempty(di_nn)
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% If the number of cycles in the testing data is larger than that

% in the the training data, set the predicted RUL to 0

RUL_Mean(ku) = 0;

else

% Aggregate all nTrain RUL predictions in a weighted-sum form

RUL_Prediction_temp = RUL_Prediction{ku}(di_nn,:);

[*,di] = sortrows(RUL_Prediction_temp,1);

di = di(1:min(length(di),50));

RUL_Mean(ku) = sum(RUL_Prediction_temp(di,1).^(-1).*….

RUL_Prediction_temp(di,2))./….

sum(RUL_Prediction_temp(di,1).^(-1));

end

clear Pred_Results RUL_Prediction_temp

RUL Prediction Results

Executing the MATLAB main code SBI_FanDemo.m produces the predicted RULs
of all 24 testing fan units, which are plotted along with the true RULs in Fig. 8.48.
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Fig. 8.48 True and predicted
RULs in electric cooling fan
prognostics

294 8 Time-Dependent Reliability Analysis in Operation …



www.manaraa.com

8.6 Exercises

8:1 Consider a basic model of an isotropic rotor with a rubbing condition. Assume
that the rotor with a lumped mass system is supported by bearings, which can
be modeled as springs and dampers. The motion behavior of the rotor system
can be ideally modeled using a second-order ordinary differential equation as

M€xðtÞþC _xðtÞþKxðtÞ ¼ mrx2cosðxtþ dÞ � FNðcos h� l sin hÞ

where M, C, and K are mass, damping, and stiffness, respectively, m, r, and d
are unbalance mass, radius, and angular orientation, respectively, x is a
rotational speed, x is a lateral displacement of the disk as a function of time t,
FN indicates the normal force, l is a friction coefficient, and h is the direction
angle of the rubbing part. Assuming that the contact occurs at a specific
rotating angle, the normal force FN can be modeled as

FN ¼ KNðtÞxðtÞ ¼ Kr a0 þ
Xm
n¼1

an cosðnxtÞ
" #

xðtÞ;

where a0 ¼ /=2p; an ¼ 2ð�1Þn sinðnp=2Þ=np

where / is the angle of contact, KN is the rubbing stiffness, and Kr is the
amplitude of the rubbing stiffness. The profile of KN as a function of / is
graphically shown in Fig. 8.49. The values of the parameters are listed in
Table 8.7.

(1) Find the response, x(t), in 1 
 t 
 2 for each of the following three
cases: (i) Kr/K = 0.2, (ii) Kr/K = 0.35, and (iii) Kr/K = 0.4.

(2) Derive the amplitude ratio of two times the fundamental frequency (2�)
to the fundamental frequency (1�) in a frequency domain as a feature for
all three cases in (1). Assume that the amplitude of two times the fun-
damental frequency (2�) is the sum of amplitudes between 1.98 and 2.02
times the fundamental frequency, and the amplitude of the fundamental
frequency is the sum of amplitudes between 0.98 and 1.02 times the
fundamental frequency.

(3) Calculate the remaining useful life (RUL) of the rotor, assuming that
cases (i), (ii), and (iii) are the responses at day 1, 65, and 100,

Fig. 8.49 Profile of rubbing
stiffness as a function of angle
of rotation
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respectively. Assume that the present day is day 100, and the threshold of
the frequency feature is 0.9. Use a single-term exponential function to
build a prognosis model.

8:2 Consider an application of model-based and data-driven prognostics to a
Li-ion battery. The objective of this application is to predict the RUL of a
Li-ion battery undergoing repeated charge and discharge cycling. The failure
threshold of capacity fade is defined as the discharge capacity of a cell falling
below 80% of its initial (BOL) capacity. Assume the capacity fade behavior of
the battery can be represented by the following empirical model [83]

Ci ¼ a1 exp k1ið Þþ a2 exp k2ið Þ

where Ci is the capacity (Ah) at the ith cycle, a1 and a2 are the coefficients of
the exponential components of capacity fade, and k1 and k2 are the exponential
capacity fade rates. Suppose the model parameters a1, k1, a2, and k2 are
independent random variables whose statistical information is summarized in
Table 8.8.

(1) Generate a synthetic data set of capacity fade from 10 cells through the
following steps:

Step 1: Generate 10 sets of random realizations of the model parameters
based on their distributions.

Table 8.7 Parameters and
their values in Problem 8.1

Parameters Values

Mass, M 1.6 � 106 kg

Damping coefficient, C 5.66 � 102 kg s−1

Stiffness, K 5.0 � 105 N/m

Unbalance mass, m 1.0 � 10−3 kg

Unbalance radius, r 2.0 � 10−2 m

Rotational speed, x 5.0 � 103 rpm

Angular orientation of unbalance mass, d 0°

Angle of contact, / 150°

Angle at the start of rubbing, b 0°

Friction coefficient, l 0.6

Table 8.8 Statistical information of the parameters of the capacity fade model for Problem 8.2

Parameter a1 k1 a2 k2
Distribution Normal Normal Normal Normal

Mean (fitted value [83]) −9.860E−07 5.752E−02 8.983E−01 −8.340E−04

Standard deviation 9.860E−08 5.752E−03 8.983E−02 8.340E−05
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Step 2: Produce a capacity vs. cycle trajectory from cycle 1 to cycle 300
for each set of parameters.
Steps 3: Corrupt each trajectory by adding a white Gaussian noise with a
mean of 0 Ah and a standard deviation of 0.005 Ah.

An example synthetic data set of capacity fade from 2 cells is shown in
Fig. 8.50, where the normalized capacity at the ith cycle ci is computed
as ci = Ci/C0, with C0 being the initial capacity.

(2) Here, treat the capacity C as the state variable and the capacity fade rates
a1, k1, a2,and k2 as the model parameters. The system transition and
measurement functions can then be written as

Transition: Ci ¼ a1;i�1 exp �k1;i�1i
� �þ a2;i�1 exp �k2;i�1i

� �þ ui;
a1;i ¼ a1;i�1 þ r1;i; k1;i ¼ k1;i�1 þ r2;i;
a2;i ¼ a2;i�1 þ r3;i; k2;i ¼ k2;i�1 þ r4;i;

Measurement: yi ¼ Ci þ vi

Here, yi is the capacity measurement at the ith cycle; u, r1, r2, r3, r4, and
v are the Gaussian noise variables with zero means. Use the standard
particle filter method to predict the RULs of each cell at cycles 50 and
150. Compare the prediction accuracy at these two cycles for each cell.
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Fig. 8.50 Synthetic data of capacity fade from two cells. For ease of visualization, capacity
measurements are plotted every 5 cycles for both cells
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Chapter 9
Case Studies: Prognostics and Health
Management (PHM)

Prognostics and health management (PHM) technology has been successfully
implemented into engineering practice in diverse settings. This chapter presents
case studies that explain successful PHM practices in several engineering appli-
cations: (1) steam turbine rotors, (2) wind turbine gearboxes, (3) the core and
windings in power transformers, (4) power generator stator windings,
(5) lithium-ion batteries, (6) fuel cells, and (7) water pipelines. These examples
provide useful findings about the four core functions of PHM technology, con-
temporary technology trends, and industrial values.

9.1 Steam Turbine Rotors

Steam turbines in power plants are large and complex mechanical rotating systems.
Generally, rigid couplings are used to connect three to five stages of shafts, as
shown in Fig. 9.1. Steam turbine systems are typically composed of a high-pressure
(HP) turbine, an intermediate-pressure (IP) turbine, two low-pressure (LP) turbines,
a generator, and an exciter. Each shaft is supported by two journal bearings. An oil
film between the journal bearing and the turbine shaft prevents direct contact
between the rotor and the stator. These bearings ensure the turbine system operates
steadily. Although turbines are designed to operate in a stable condition, various
uncertainties exist, such as operation uncertainty, manufacturing variability, and
installation uncertainty. In adverse conditions, various anomaly states can be found
in a turbine system, for example unbalance, misalignment, rubbing, and oil whirl,
among others. The work described here as a PHM case study examined a number of
steam turbine systems from four power plant sites in Korea.
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9.1.1 Designing the Health Sensing Function

Vibration signals are commonly used for health diagnostics and prognostics of
steam turbines. Even under normal conditions, a bit of unbalance is present in the
turbine rotors, resulting in a certain level of vibration when rotating. As anomaly
states begin developing, the level of vibration increases. Sophisticated analysis of
vibration signals is essential for robust diagnostics and prognostics of the turbine
rotors. In addition to vibration sensors, temperature and pressure signals can also be
acquired for PHM of turbine rotors. Data acquisition must be carefully designed and
care must be taken to account for the data-sampling rate and frequency, logging
power and storage, and other factors.

Proximity sensors are widely used for condition monitoring of journal bearing
rotor systems in turbines. The sensors directly measure gap displacement signals
between the turbine shaft and the sensor. These measurements are represented by
vibration signals that are acquired via the AC component of the signals. The DC
component of the signals represents the absolute position of the turbine shaft
centerline. Since the gap information provides information about the dynamic
behavior of the turbine system, the state of the turbine can be accurately determined
by using vibration signals to analyze the behavior of the turbines [1, 2].

To robustly detect potential anomaly states, the number and location of prox-
imity sensors must be carefully considered. Adding more sensors requires increased
data analysis loads and data storage capacity. On the other hand, the
high-temperature environment in steam turbines limits sensor placement. Sensors
are often placed between the coupling and the bearing seal to limit the effect of the
high-temperature steam. Considering these practical aspects, the sensors are typi-
cally placed at two positions for each turbine stage, adjacent to the journal bearings,
as illustrated Fig. 9.2. For example, in a three-stage steam turbine, vibration signals
are acquired from six different axial positions. For each axial location, two prox-
imity sensors are placed orthogonally to obtain the orbit trace of the turbine cen-
terline. In total, twelve proximity sensors are used for PHM in a three-stage steam
turbine.

Other signal measurement specifications—period, sampling rate, and duration—
must also be carefully determined when designing the sensing function. The period
between the signal measurements should be short enough to detect abrupt degra-
dation while still being long enough to minimize the burden of data storage. Signals
should be measured when an event (e.g., anomaly state, high vibration)

LP - A LP - BHIP

Journal 

Fig. 9.1 Three-stage steam turbine diagram
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unexpectedly occurs. When determining the sampling rate, general considerations
include the harmonics in the frequency response, computational capacity, and the
frequency resolution required for anomaly detection. The sampling rate of signals
must be high enough to perform accurate analysis of vibration signals while pre-
venting the leakage of fast Fourier transform (FFT). The duration of the signal
measurement should be carefully determined while considering the available
computation ability and the capacity of the data acquisition (DAQ) hardware. In this
case study, the measurement period, sampling duration, and rate were set as every
twelve hours (day and night), ten minutes per day, with a sampling frequency of
2048 Hz.

Given the vibration signals, a tachometer signal can be measured, which has a
pulse per revolution. This signal can provide absolute phase information for the
vibration signals and the revolutions per minute (rpm) of the turbine. Moreover, the
tachometer signal works as a reference for use when vibration signals are resam-
pled. Using this reference, the signals can be synchronized with other vibration
signals.

9.1.2 Designing the Health Reasoning Function

The objective of the reasoning function is to extract the health data of steam
turbines using measured vibration signals. This requires some key reasoning steps,
including: preprocessing, feature extraction, feature selection, and classification.
These are the steps required for the supervised machine learning method.

Preprocessing

Vibration signals must be processed before signal features are extracted. The
rpm of a steam turbine varies between 3600 ± 20 rpm; however, larger variations
can occur due to uncertainties. These variations in rpm may lead to inconsistent
reasoning results because the fixed sampling rate is likely to yield different sampled
data at given time intervals. This uncertainty can be controlled by applying phase
synchronized resampling, also known as angular resampling, to the acquired
vibration signals, as shown in Fig. 9.3 [4, 5]. Using the tachometer peaks as the
starting point of a revolution, the signals can be resampled to have an equal number

LP - A LP - BHIP

Journal BearingProximity Sensor

Fig. 9.2 Axial locations of proximity sensors. Reprinted (adapted) with permission from Ref. [3]
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of points per revolution. The resampled vibration signals will then give consistent
results, despite rpm variations.

Feature Extraction

Next, the resampled vibration signals are used to extract candidate features.
Based on the information from complete revolutions, candidate features can be
extracted with minimal noise in the order domain. Since steam turbines rotate
mostly at a steady state, time- and frequency-domain features can be used.
Candidate features include eight time-domain features and eleven frequency–do-
main features. The extracted features are presented in Tables 9.1 and 9.2 [6, 7].

Among the eight time-domain features, max, mean, and root-mean-square
(RMS) are related to the energy of the vibration. Skewness and kurtosis, which are
the third and fourth statistical moments, respectively, represent the statistical
characteristics. The last three features—crest factor, shape factor, and impulse
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Fig. 9.3 Resampling
vibration signals;
a tachometer signal, b raw
signal, and c resampled signal

Table 9.1 Time-domain
features

Index Features Description

t1 Max Max(|X|)

t2 Mean Mean(|X|)

t3 RMS
ffiffiffiffiffiffiffiffiffiP

X2
i

N

q
t4 Skewness

P
Xi��Xð Þ3

N�1Þs3ð
t5 Kurtosis

P
Xi��Xð Þ4

N�1Þs4ð
t6 Crest factor Max

RMS

t7 Shape factor RMS
Mean

t8 Impulse factor Max
Mean
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factor—are related to the shape of the sinusoidal wave (e.g., sharpness).
Frequency-domain features are calculated from the power spectrum of the vibration
signals. In Table 9.2, f and s(f) denote the frequency and the power spectrum of
frequency f, respectively. Among the eleven features, frequency center (FC) and
root-mean-square frequency (RMSF) are related to the main frequency.
Root-variance frequency (RVF) denotes the variance of the power spectrum. Other
frequency features represent the ratios of harmonics/sub-harmonics to the funda-
mental frequency.

As stated above, the features are extracted based on complete revolutions.
Time-domain features are extracted based on one revolution, while the
frequency-domain features are based on multiple revolutions. To observe signals
that change in a short time period, one-revolution-based time-domain features have
been found to be more effective. On the other hand, the resolution of the power
spectrum is an important factor for extraction of frequency-domain features.
Resolution can be enhanced by using data from multiple revolutions; however, the
number of revolutions is limited to sixty because the data for a large number of
revolutions can be burdensome to the DAQ hardware. Sixty revolutions are rec-
ommended to minimize the frequency leakage problem for turbines operating at
3600 rpm [3].

Omnidirectional regeneration (ODR) can be applied to enhance the robustness of
diagnosis. Diagnosis results for directional anomaly states (e.g., misalignment,
rubbing) depend on the direction of the sensors. The ODR method can generate
vibration signals in an arbitrary direction, which makes the diagnosis procedure

Table 9.2 Frequency-domain features

Index Features Description

f1 FC
R f�s fð ÞdfRs fð Þdf

f2 RMSF R f 2�s fð ÞdfRs fð Þdf
h i1=2

f3 RVF R f�FCð Þ2�s fð ÞdfRs fð Þdf
h i1=2

f4 0:5x=1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s f0:5xð Þ=s f1xð Þp

f5 2x=1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s f2xð Þ=s f1xð Þp

f6 1x� 10xð Þ=1x P10
n¼1

ffiffiffiffiffiffiffiffiffiffiffi
s fnxð Þpn o

=
ffiffiffiffiffiffiffiffiffiffiffi
s f1xð Þp

f7 0� 0:39xð Þ=1x R 0:39x
0

ffiffiffiffiffiffiffiffiffi
s fð Þp

df
n o

=
ffiffiffiffiffiffiffiffiffiffiffi
s f1xð Þp

f8 0:4x� 0:49xð Þ=1x R 0:49x
0:4x

ffiffiffiffiffiffiffiffiffi
s fð Þp

df
n o

=
ffiffiffiffiffiffiffiffiffiffiffi
s f1xð Þp

f9 0:51x� 0:99xð Þ=1x R 0:99x
0:51x

ffiffiffiffiffiffiffiffiffi
s fð Þp

df
n o

=
ffiffiffiffiffiffiffiffiffiffiffi
s f1xð Þp

f10 3x� 5xð Þ=1x R 5x
3x

ffiffiffiffiffiffiffiffiffi
s fð Þp

df
n o

=
ffiffiffiffiffiffiffiffiffiffiffi
s f1xð Þp

f11 3x; 5x; 7x; 9xð Þ=1x P4
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s f 2nþ 1ð Þx
� �qn o

=
ffiffiffiffiffiffiffiffiffiffiffi
s f1xð Þp
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robust regardless of directionality. Researchers have also reported that the perfor-
mance of the diagnosis can be enhanced by using the ODR method without extra
sensors [8].

Feature Selection and Classification

The feature selection process is of great importance when the number of features is
large. This process determines the optimal feature subset from a set of candidate
features. Each feature possesses a different separation ability to distinguish the health
states of the steam turbine. To obtain robust reasoning for steam turbines, a genetic
algorithm is integrated with different separability measures, such as probability-of-
separation (PoS) or correlation coefficient [3, 9]. A genetic algorithm can be used to
randomly generate subsets offeatures, and the degrees of separability can bemeasured
for the subsets using either the PoS or a correlation coefficient method. Subset
generation is repeated until a predefined criterion is satisfied. Note that PoS is a
separability measure that quantifies the degree of separation between two classes.

Once the optimal feature subset is determined, classification continues using the
support vector machine (SVM) method to minimize structural risk [10, 11].
Through an optimization process, hyper-planes that separate multiple states are
trained using the data from known states. Using the trained classifier, the unknown
states of a turbine can be predicted.

9.1.3 Designing the Health Prognostics and Management
Functions

The prognostics function predicts the remaining useful life (RUL) of a steam tur-
bine. To develop the prognostics function, a health index is defined for each
anomaly state, as shown Table 9.3. Vpp is the peak-to-peak value of the vibration
signal, clearance denotes the clearance of an oil seal in a steam turbine, and f8
indicates one of the frequency-domain features shown in Table 9.2. Each health
index, defined as a function of the extracted features, considers certain character-
istics of the anomaly conditions. The indices are normalized between zero and one.
A simple example is an unbalanced state in a turbine. The health index of unbalance
is the peak-to-peak level divided by the clearance level. After the health indices are
defined, the RUL can be calculated by tracing the trend of the indices, as presented
in Fig. 9.4. The blue points in the figure are used to establish the RUL model. The
model is used for estimating the RUL of the steam turbine, as shown by the green
dotted line.

An accurately calculated RUL provides the basis for condition-based monitoring
(CBM) of steam turbines. CBM of steam turbines helps steam turbine operators
schedule maintenance actions based on the analyzed condition of the turbines.
Operators can minimize unnecessary maintenance actions and can prevent catas-
trophic turbine failures by reliably predicting turbines’ health conditions. It has
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been reported in [12] that CBM can substantially save on overall operation and
maintenance (O&M) costs.

9.2 Wind Turbine Gearboxes

The drivetrain of a wind turbine consists primarily of the main bearing, drive shaft,
gearbox, and generator, as shown in Fig. 9.5. The main bearing supports the blades,
and the gearbox connected to the drive shaft increases the rotating speed. Rotating
energy from the high-speed shaft (i.e., the output shaft of the gearbox) is transferred
to the generator. Wind turbines generally operate in harsh environmental condi-
tions, such as random and non-stationary wind profiles. Moreover, offshore wind
turbines are exposed to highly varying sea gusts with high salt concentrations.
Thus, the rotating parts in the drivetrain of a wind turbine are prone to a variety of
mechanical failures, such as fatigue, wear, and corrosion. Among the drive-train
components of a wind turbine, the gearbox is known to have the highest risk due to
its potential for an excessively long downtime and its expensive replacement cost.
This section discusses the four main PHM functions for wind turbine gearboxes.

Fig. 9.4 Example of
prognostics

Table 9.3 Definition of an anomaly index for each health state

Health state Anomaly index

Unbalance Vpp

clearance

Rubbing Vpp

clearance 2� Aspect Ratio of 1X Orbitð Þ
Oil whirl Vpp

clearance 2� f8ð Þ
Misalignment Vpp

clearance 2� Aspect Ratio of 1X Orbitð Þ
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9.2.1 Designing the Health Sensing Function

Wind turbines are equipped with two kinds of DAQ systems, including SCADA
(Supervisory Control and Data Acquisition) and CMS (Condition Monitoring
System). The main purpose of both SCADA and CMS is to provide data for
integrated performance and health management in wind turbines.
Although SCADA was originally designed for performance management, recent
studies have shown that SCADA data can also serve as a precursor to represent the
health state of a wind turbine; data can also be used to enhance the performance of
PHM [13].

SCADA basically measures four kinds of signals, including environmental data
(e.g., wind speed and direction), operational data (e.g., power and rotor speed),
controlling data (e.g., yaw and pitch control) and response data (e.g., temperatures
of the main bearing and gearbox shaft). Data collected at a very low frequency, for
example once every 10 min, make it possible to evaluate the performance behavior
of a wind turbine. Some failure types of the gearbox affect the overall system
performance, thus leading to anomaly conditions such as increased temperature of
the lubrication oil or unexpected speed fluctuations due to irregular load conditions.
Thus, the use of SCADA data as a means for performing PHM is an emerging
trend.

CMS requires various kinds of signal analysis, such as vibration analysis, oil
debris analysis, and noise analysis, to enhance PHM capabilities. Among the var-
ious analysis methods available, a recent study described that typical mechanical
failure can be most sensitively detected using vibration analysis [14]. DNV GL, one
of the most important organizations for certification of wind turbines, enacted a
regulation that every system should acquire high-frequency vibration signals (in
addition to SCADA) for the purpose of health assessment in wind turbines.
DNV GL certification established a guideline regarding the necessary number of
vibration sensors that should be installed on the drivetrain of a wind turbine.
According to the certification, at least four vibration sensors, with a sampling rate of

Fig. 9.5 Diagram of a wind turbine
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more than 10 kHz, should be installed on each gearbox for condition monitoring
purposes. A typical wind turbine gearbox consists of multiple stages of gear sets,
including at least one planetary stage. Vibration sensors should be mounted near
locations where a high load is applied. In general, it is suggested that sensors be
positioned at each gear stage of the gearbox. When a planetary gearbox is of interest
for PHM, DNV GL certification suggests placing the sensors in “the area of the ring
gear of the planetary gear stage” and at “the level of the sun gear in the 1st stage of
the planetary gear stage” where vibration signals from gear meshing can be
effectively captured.

Recent studies showed that the integrated measurement of SCADA signals and
vibration signals can enhance the performance of PHM for wind turbine gearboxes.
For example, to reduce the effects of speed variations within the system, several
commercial CMSs are attempting to analyze the vibration signals only when a wind
turbine operates under nominally constant rotational speed and torque. This can be
achieved by adaptively measuring vibration signals, while continuously monitoring
the performance of wind turbines via SCADA signals.

9.2.2 Designing the Health Reasoning Function

Preprocessing

Wind turbine gearboxes consist of multiple stages of gear sets and many bearings.
The effects of the gearbox components are mixed together, and are measured using
an accelerometer. Thus, to enhance fault detectability, preprocessing techniques
should be used on vibration signals. As discussed in Sect. 8.3.1 of Chap. 8, one of
the most widely used preprocessing techniques is time synchronous averaging
(TSA). TSA serves as a signal separator that facilitates selective analysis of a
particular vibration signal that is estimated to originate from a single component of
interest in the gearbox [15]. Figure 9.6 illustrates the TSA procedure. In TSA, the
signal is separated by gear rotating frequency and ensemble averaged. The deter-
ministic signal, which is synchronously regular with the gear rotation, remains.
However, irregular or noise signals asymptotically converge to zero as the number
of averages in the ensemble increases. Using the signal processed with TSA,
additional analysis can be performed by defining residual signals (RES) and dif-
ference signals (DIF) that represent the energy of sidebands and noise, respectively.
RES can be calculated from TSA by filtering out regular components, including the
fundamental gear mesh frequency and its harmonics. Information about pure
sidebands can be observed from RES signals. DIF is calculated from RES by
filtering out sidebands. In the normal state, DIF should be ideally a white Gaussian
noise because there are no regular or irregular meshing components in the fre-
quency domain. When a fault occurs, an increase in the energy of sidebands and
unexpected frequency components can be detected well using RES and DIF.
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Feature Extraction

Two feature extraction techniques are discussed here, based on: (a) SCADA and
(b) vibration. First, the SCADA-based technique can be performed by monitoring
power quality and temperature trends. Both the data-driven approach and the
model-based approach have four essential steps: (1) define a data-driven or
physics-based model that estimates the output signal (i.e., power or temperature) of
a gearbox based on the input signals (e.g., speed, torque, and power) under the
normal state, (2) continuously measure the input signals and calculate the estimated
output signals using the established model (while simultaneously collecting the
measured output signals), (3) calculate residuals, which are defined as the difference
between the estimated and the measured output signals, and (4) correlate the
residuals and the health state. As an example, Fig. 9.7 illustrates the health rea-
soning process of a wind turbine gearbox where the gearbox oil outlet temperature
was selected as the reference SCADA data. Applicable modeling techniques
include physics-based modeling techniques, such as temperature modeling using a
heat generation model, and data-driven modeling techniques, such as principal
component analysis (PCA), neural networks (NN), auto-associative kernel regres-
sion (AAKR), and the nonlinear state estimate technique (NSET).

Fig. 9.6 Procedures for TSA

Fig. 9.7 Health reasoning for a wind turbine gearbox using temperature monitoring
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Second, vibration-based feature extraction can be performed using time-domain
analysis and/or frequency-domain analysis along with preprocessed signals (i.e.,
TSA, RES, and DIF signals extracted from the preprocessed vibration signals) [16].
Time-domain features acquired from the preprocessed signals can be categorized
into three types: kinetic energy, statistics, and waveform. Unbalance in a rotor
system can be detected by examining features related to kinetic energy, such as root
mean squares (RMS). Sometimes, statistical information (i.e., skewness and kur-
tosis) of the DIF signal is useful for anomaly detection in gears. For detection of
abrupt peaks caused by a gear defect, waveform features (e.g., crest factor (CF),
which is defined as the peak-to-peak value divided by the RMS of the pre-processed
signals) can be used. In general, time-domain features are rarely used solely, but are
instead typically combined with frequency-domain features. Frequency domain
features can be obtained by examining a combination of spectral components of the
pre-processed signals, which can be calculated through FFT (Fast Fourier
Transform) analysis. Energy contained in the fundamental gear mesh frequency and
its harmonics, along with the sidebands, is known to be a reliable feature in the
frequency-domain. For example, tooth defects can cause amplitude and frequency
modulation in the signals, thus increasing the energy of sidebands.

Fault Diagnostics

After extracting the features, health classification and health evaluation can
continue using the same process described in Sect. 9.1.2 for a rotor system. An
anomaly state in a wind turbine gearbox can be suspected when feature data
acquired from an in-service gearbox unit deviates from that expected from a normal
state. Various pattern recognition techniques can be applied to classify anomaly
states from the normal state of the gearbox. Recently, vibration signals from CMS
and operating data from SCADA have been analyzed together for robust health
reasoning of wind turbine gearboxes. This technique is suggested for certification of
wind turbines (e.g., ISO, IEC, and GL).

9.2.3 Designing the Health Prognostics and Management
Functions

Schedule-based maintenance is a conventional activity designed to assure reliability
of wind turbines. However, schedule-based maintenance is challenging because an
unexpected failure of a wind turbine can cause a huge amount of economic loss.
Recently, to overcome this challenge, condition-based maintenance (CBM) of wind
turbines using PHM has been proposed.

In CBM, a health prognostics function predicts the remaining useful life
(RUL) of the system by understanding the temporal behavior of the health features.
The Hidden Markov model, neural networks, and particle filter methods are the
most widely used techniques for modeling the temporal behavior of the health
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features, thus enabling timely and preventive maintenance and decision making
(e.g., CBM [17]).

For effective maintenance decisions, it is of great importance to understand the
lead-time needed for maintenance of a target system. Wind turbine maintenance
cannot occur instantly after predicting an anomaly state of the turbines due to
numerous practical difficulties, such as remote location of the turbines, part pro-
curement and supply, availability of maintenance crews and facilities, site acces-
sibility, etc. This problem is even worse when wind turbines are located offshore.
Thus, the lead-time to prepare for suggested maintenance must be carefully ana-
lyzed. Moreover, cost analysis becomes an important element when dealing with a
large-scale wind farm comprised of a fleet of wind turbines. Because even a single
maintenance action is accompanied by large expenses for a sea vessel with a crane,
crews, skilled technicians, and so on, maintenance schedules should be optimized to
minimize the overall operation and maintenance (O&M) cost. Thus, the health
management function should make optimal maintenance decisions while account-
ing for the lead-time and cost structure. Additional details on these considerations
can be found in [18], which contains a general theoretical background, and in [19]
which examines applications in wind farms.

9.3 Power Transformers

A power transformer is an electrical system that increases or decreases the voltage
of alternating current (AC). Power transformers should be monitored and main-
tained properly due to the catastrophic consequences of a failure and their high
failure rate. Transformer failures can be categorized into three groups: mechanical,
electrical, and chemical. Among them, mechanical failure is rarely researched,
despite the high chance (approximately 40%) of mechanical transformer failure
[20]. The following subsections present the four core functions exercised for PHM
of power transformers.

9.3.1 Designing the Health Sensing Function

Common mechanical failures of power transformers include loosening, cracking,
and wear at mechanical joints. These failures are mainly due to constant vibrations
in the transformer. Careful analysis of vibration can help detect mechanical failures
in advance. Transformer vibration mostly comes from the winding and the core.
Winding vibration is mechanically produced by an electrodynamic force, and its
acceleration aw is proportional to the square of loading current I as
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aw / I2 / I20cos
24pft ð9:1Þ

where I0 and f are the current amplitude and AC frequency, respectively. The core
vibration is generated by a phenomenon called magnetostriction, and its accelera-
tion ac is proportional to the square of loading voltage U with an amplitude U0 as

ac / U2 / U2
0cos

24pft ð9:2Þ

Both vibration sources have twice the AC frequency as the fundamental frequency.
It is known that the core vibration has harmonic frequency components as well, due
to magnetization hysteresis and the complexity of the core structure [21]. Thus,
transformer vibration is a key physical quantity that can be used for PHM of power
transformers.

In order to measure the vibration of a transformer, acceleration sensors are often
installed on the outer surface of the transformer (see Fig. 9.8). Vibration is prop-
agated into the sensors through the insulating oil inside the transformer. These
sensors cannot be installed inside the transformer due to the insulating oil and high
electro-magnetic field.

As shown in Fig. 9.8, transformer vibration is measured at numerous locations,
specifically 32–162 locations, depending on the transformer’s size and type.
Measurement can be problematic due to (1) costly sensor installation and mainte-
nance, (2) management and prohibitively large processing times due to the amount

Fig. 9.8 Sensor locations on
the power transformer’s front
surface
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of data, and (3) acquisition of unnecessary data. Thus, sensor networks must be
optimally designed for cost-effective PHM. Measured or simulated vibration data
can be used to optimize design of the sensor network. Decision variables include
the type, number, and locations of sensors [22]. It is not easy for the
simulation-based approach to take into account various uncertainty sources, (e.g.,
operating conditions, maintenance, and manufacturing). Thus, first, six optimal
positions are found using measured vibration data. Given the fundamental and
harmonic frequencies found as features of vibration signals in the transformers, the
six sensors show the equivalent behavior of the features, compared to the fully
loaded sensors, as presented in Fig. 9.9.

9.3.2 Designing the Health Reasoning Function

Two health measures are defined here: the fundamental frequency and the harmonic
frequency. They are referred to as the fundamental health measure (FHM) and the
harmonic health measure (HHM), respectively. As addressed in Sect. 9.3.1, they
play an important role in assessing the health condition of the core and the winding.
Any mechanical failure in the core can increase the vibration energy in both the
fundamental and harmonic frequencies; whereas, one in the winding can only affect
the fundamental frequency. Mathematically, the two health measures, FHM and
HHM, can be expressed as

Fig. 9.9 Comparison of fully-loaded sensors and optimally positioned sensors
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FHM ¼ maxi2 kf g S
fund
i ð9:3Þ

HHM ¼ maxi2 kf g Sharmi ð9:4Þ

where Sfundi and Sharmi are the spectral responses of the vibration signals at the
fundamental (120 Hz) and harmonic frequencies (240 Hz) measured at the ith
sensor, and kf g is a sensor set obtained from the sensor position optimization
process. Figure 9.10 shows the two health measures for three groups of power
transformers. The different groups are defined in terms of age: Group A is 21 years
old, Group B is 14 years old, and Group C is 6 years old. From the spread of the
two health measures, it can be inferred that (1) a faulty winding in Group A leads to
a high FHM, (2) a faulty core in Group B leads to high HHM, and (3) no fault
findings in Group C indicate any low-health measures. Later, it was confirmed that
the transformers in Groups A and B had been replaced according to field experts’
decisions, and the expected mechanical faults of these replaced transformers were
also observed.

9.3.3 Designing the Health Prognostics Function

This subsection briefly discusses strategies for predicting the RUL of power
transformers in light of potential mechanical failures. Determining the threshold for
mechanical failure of a transformer is an important step for the health prognostics
task. This study defines the threshold based upon historical data and experts’
opinion. A health degradation model can be developed using the health data
acquired from many transformers over different operational periods. The RUL is

Fig. 9.10 Two health
measures for power
transformers
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then predicted using the similarity-based interpolation (SBI) method [23].
Figure 9.11 shows the RUL prediction results, which can be verified from the fact
that the RULs of Groups A and B are smaller than those of Group C.

9.4 Power Generators

Power generators are key components in power plants. Power generators convert
kinetic energy into electrical energy. A power generator generally consists of a
stator and a rotor, as shown in Fig. 9.12a. Reliable operation of power generators is
essential because unexpected breakdowns of a generator can lead to power plant
shutdown and substantial related economic and societal losses. Typically, the stator
winding, which is composed of slender copper strands, is one of the most vul-
nerable locations of the power generator. In an anomaly condition, the exterior
insulation of the stator winding can deteriorate due to moisture from inner coolant
channels, as shown in Fig. 9.12b. This water absorption in stator winding insulation
is an indirect reason for catastrophic failure, as shown in Fig. 9.12c. This section
describes how a smart health reasoning system for power generator windings can
mitigate downtime due to moisture absorption.

Fig. 9.11 Predicted RULs of
power transformers in
Groups A, B, and C

Fig. 9.12 a Structure of a power generator, b cross-sectional view of a winding, and c catastrophic
failure of a power generator
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9.4.1 Designing the Health Sensing Function

In a water-cooled power generator, coolant water flows into the water channels of
the winding. Sometimes, leakage occurs and water is absorbed into and remains in
the winding insulation. Leakage can be caused by various operational stresses, such
as mechanical vibration, thermal shock, and crevice corrosion. The water that
remains in the insulation degrades the winding insulation [24], which can cause the
insulation to break down and ultimately cause the power generator to fail. For this
reason, electric companies or manufacturing companies assess the health condition
of the winding insulation using water absorption detectors. A water absorption
detector infers the presence of water in the insulation by measuring capacitance of
the insulation [25]. Because the relative static permittivity (or the dielectric con-
stant) of water is higher than that of mica (which is what is generally used as the
insulation material), wet insulation has a higher capacitance C, based upon the
following equation:

C ¼ ere0
A
t

ð9:5Þ

where A is the measurement area, t is the distance between the plates, e0 is the
electric constant (e0 � 8.854 pF-m-1), and er is the relative static permittivity of the
material.

Capacitance measurements as health data provide valuable information that can
be used to infer the amount of water absorption in a stator winding. Thus,
health-relevant information about the winding can be extracted from capacitance
data. The power generators employed in the study described here have forty-two
windings and are water-cooled. As shown in Fig. 9.13, the assembly slot for both
the top and bottom groups contains ten measurement points. Each measurement
point can be modeled as a random variable, X1–X10.

The capacitance data acquired at these measurement points were modeled with
statistically correlated random variables, Xi. One way to measure the correlation
between two random variables is to use the Pearson product-moment correlation

Fig. 9.13 Structure diagram of a water-cooled power generator with a 2-path system. Reprinted
(adapted) with permission from Ref. [26]
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coefficient. Table 9.4 summarizes the correlation coefficients for the ten random
variables in a matrix form. The highlighted values in this table are the correlation
coefficients between the measurement variables within the same group (e.g., the
CET group). One can observe two features from the highlighted values: (1) there is
a statistically positive correlation, and (2) there is a higher degree of correlation
within the same group. These features indicate that the two or three capacitance data
from the same group tend to behave with linear dependence. Based upon the
measurement location and the correlation features, the measurement points with
high correlation can be conceived as individual data groups, such as CET, CEB,
TET, and TEB. This implies that one entire dataset for ten random variables would
be split into four groups, each of which consists of two or three random variables.

9.4.2 Designing the Health Reasoning Function

Although the capacitance data are relevant to the health condition of the stator
winding, the high dimensionality and non-linearity of the data make it difficult to
infer the health condition easily and precisely. To address this situation, this section
introduces the definition of a new health index, namely Directional Mahalanobis
Distance (DMD). Traditional Mahalanobis distance (MD) is a relative health mea-
sure that quantifies the deviation of a measured data point from a clustered data
center, which is generally a populated mean (l) of a dataset [27]. MD degenerates
multi-dimensional data (X) to a one-dimensional distance measure, while taking into
account the statistical correlation between random variables, as shown in Fig. 9.14.

As compared to the Euclidean distance, the MD measure possesses a few unique
advantages: (1) MD transforms a high-dimensional dataset that is complicated to
handle into a one-dimensional measure capable of easy comprehension and quick
computation. (2) MD is robust to differing scales of the measurements, as MD
values are calculated after normalizing the data. (3) By taking into account the
correlation of the dataset, MD is sensitive to inter-variable changes in multivariate
measurements. However, MD has its own limitation in that it is a
direction-independent health measure in the random capacitance space. In other
words, two capacitance measurements with the same MD values, but one with a
higher capacitance value and the other with a lower value, are treated equally,
although they most likely imply two different levels of moisture absorption. Thus,
Directional Mahalanobis Distance (DMD) is proposed to overcome this limitation
of MD. DMD can be expressed as follows:

DMD eXi

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieXi � l
� �T

R�1 eXi � l
� �r

ð9:6Þ

eXn;i ¼ Xn;i; if Xn;i [ ln
ln; otherwise

�
ð9:7Þ
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where Xn;i denotes the raw capacitance data at the nth measurement location of the
ith bar unit, ln is the mean of the capacitance data at the nth measurement location,
and eXn;i denotes the processed capacitance data. Through the projection process in
Fig. 9.15b, the absolutely healthy data would be ignored in the subsequent trans-
formation. The data projection underscores the need for consideration of the
direction in the health reasoning process of the measurement data. This leads to the
unique capability of the proposed index that makes use of the distance and
degradation direction as a health measure, as shown in Fig. 9.15c.

Based upon the maintenance strategies for the stator winding and field experts’
opinions, three health grades were proposed, as summarized in Table 9.5: (1) faulty
condition (or the presence of water absorption), (2) warning condition (or close to
water absorption), and (3) healthy condition (or no water absorption).

9.4.3 Designing the Health Prognostics and Management
Functions

Figure 9.16 shows the scatter plot of DMD against the operating period. The circles
mark the data obtained from the faulty (water absorbed) windings. In particular, two
data points marked with red circles represent two failed windings that caught fire in
2008. Most of the circled data points were classified as “faulty” or “warning.” This
indicates that the proposed health grade system properly defines the health condi-
tion of the generator stator windings as it relates to water absorption. The circles in
the healthy zone are maintenance cases due to reasons other than water absorption.

Fig. 9.14 Healthy and faulty points located in the a original space and b transformed space.
Reprinted (adapted) with permission from Ref. [28]
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The proposed health grade system and the suggested maintenance actions are
expected to make it possible to carry out condition-based system maintenance. By
providing power plant maintenance personnel with a quantitatively established
maintenance guideline, the facility maintenance process would become much more
systematic and objective.

Fig. 9.15 Scatter plots a before the projection, b after projection, and c after transformation.
Reprinted (adapted) with permission from Ref. [28]

Table 9.5 Definition of the health grades and suggested actions

Health grade Range Suggested actions

Top Bottom

Faulty DMD2 � 25 DMD2 � 16.7 Immediate replacement

Warning 15 � DMD2 < 25 10 � DMD2 < 16.7 Frequent inspection

Healthy DMD2 < 15 DMD2 < 10 No schedule
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9.5 Lithium-Ion Batteries

Lithium-ion (Li-ion) battery technology has played a critical role in realizing
wide-scale adoption of hybrid and electric vehicles; it also offers great promise for
emerging applications in smart grids and medical devices. Compared to conven-
tional batteries, Li-ion batteries have a higher energy density. This feature con-
tributes to their success but also raises safety concerns. For example, a Li-ion
battery pack could rupture or even explode under short-circuit conditions. Due to
their widespread use, failures of Li-ion batteries could result in enormous economic
losses and/or catastrophic events. Over the past two decades, real-time health
reasoning techniques have been developed and deployed in battery management
systems (BMSs) to monitor the health condition of batteries in operation. Based on
voltage, current, and temperature measurements acquired from the battery, these
techniques estimate two performance indicators of the battery: state of charge
(SOC) and state of health (SOH). Recently, health prognostic techniques have been
developed, based on health reasoning, to predict RUL, i.e., when the battery is
likely to fail.

9.5.1 Designing the Health Sensing Function

Most BMSs are capable of measuring three operating characteristics of Li-ion
batteries: (terminal) voltage, current, and temperature. It is important to be able to
measure these characteristics in real-time for two reasons. First, these sensory
measurements serve as essential inputs for real-time health diagnostics and prog-
nostics. Second, the performance of Li-ion batteries is dependent on each of these

Fig. 9.16 Scatter plot of
DMD against the operating
time
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operating characteristics. Specifically, Li-ion batteries must operate within a safe
and reliable operating area, defined by simultaneously acceptable voltage, current,
and temperature windows. When any of these are outside acceptable operating
ranges there may be rapid degradation of battery performance and/or sudden
catastrophic failure (e.g., fire, rupture, or explosion). As an example, we will next
examine the effects of operating voltage on battery degradation. Current and tem-
perature extremes can also result in failure.

The usual operating voltage window of most Li-ion batteries (e.g., LiCoO2/
graphite or LCO/C, LiNi0.8Co0.15Al0.05O2/graphite or NCA/C, and LiCoxNiy
MnzO2/graphite or NCM/C) is between 2.5 and 4.2 V. If the operating voltage
during charge exceeds the upper voltage limit (e.g., 4.2 V), the resulting overcharge
condition will accelerate the oxidation and decomposition of the electrolyte com-
ponents and the dissolution of the active material(s) in the positive electrode [29,
30]. Along with the damage induced to the electrolyte and positive electrode, the
excessive charge current will cause lithium ions to be deposited as metallic lithium
on the surface of the negative electrode. This is known as lithium plating. This
degradation mechanism accelerates capacity fade, and may ultimately result in an
internal short circuit between the two electrodes. If the operating voltage falls well
below the lower voltage limit (e.g., 2.5 V), Li-ion cells will suffer from progressive
loss of the negative electrode materials. Specifically, the copper current collector of
the negative electrode will be dissolved into the electrolyte, which will cause
delamination of the electrode materials from the current collector. When this
occurs, the delamination causes a significant loss of active material and an increase
of internal resistance.

9.5.2 Designing the Health Reasoning Function

In a Li-ion battery cell, the SOC quantifies the remaining charge of a cell relative to
its fully charged capacity. The SOC of a cell changes very rapidly and, depending
on the use condition, may traverse the entire range 100–0% within minutes.
Capacity is an important SOH indicator [31, 32] that determines the maximum
amount of charge that a fully charged battery can deliver. In contrast to the rapidly
varying behavior of the SOC, the cell capacity tends to vary more slowly; it
typically decreases 1.0% or less in a month with regular use. Given a discrete-time
dynamic model that describes the electrical behavior of a cell and knowledge of the
measured electrical signals, the health reasoning function aims to estimate the SOC
and the capacity of the cell in a dynamic environment at every charge/discharge
cycle. Using this information, it predicts how long the cell is expected to last before
the capacity fade reaches an unacceptable level. The subsequent sections describe
one case study that demonstrates this process.
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Discrete-Time Cell Dynamic Model

SOC estimation is essential for capacity estimation. In order to estimate the SOC
in a dynamic environment, we need a cell dynamic model that relates the SOC to
the cell terminal voltage. Here we can use a simplified equivalent circuit model (or
lumped parameter model), as shown in Fig. 9.17, which considers the effects of
OCV, series resistance (Rs), diffusion resistance (Rd), and diffusion capacitance (Cd)
[34]. The model expresses the cell terminal voltage as

Vk ¼ OCVðSOCkÞ � ik � Rs � Vd;k ð9:8Þ

where OCV is the open circuit voltage, i is the current, Rs is the series resistance, Vd

is the diffusion voltage, and k is the index of the measurement time step. Since there
is a strong correlation between the SOC and OCV, the SOC can be estimated from
the OCV of the cell. The state transition equation of the diffusion voltage can be
expressed as

Vd;kþ 1 ¼ Vd;k þ ik � Vd;k

Rd

� 	
� Dt
Cd

ð9:9Þ

where Rd is the diffusion resistance, Cd the diffusion capacitance, and Δt is the
length of the measurement interval. The time constant of the diffusion system can
be expressed as s = RdCd. Note that, after a sufficiently long duration (e.g., 5s) with
a constant current ik, the system reaches a final steady state with a final voltage
Vd = ik � Rd and the cell terminal voltage becomes Vk = OCV(SOCk) − ik(Rs + Rd).

Given the measured electrical signals (i.e., cell current and terminal voltage) and
the cell dynamic model, we can estimate the SOC by using one of the existing

Cd
Rd

RsOCV
+–

+ –

i

Vd

+–

V

Fig. 9.17 A Li-ion battery equivalent circuit model (or lumped parameter model): open circuit
voltage (OCV), series resistance (Ri), diffusion resistance (Rd), and diffusion capacitance (Cd).
Reprinted (adapted) with permission from Ref. [33]
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approaches, such as the extended/unscented Kalman filter [31, 32, 34, 35] and the
coulomb counting technique [36].

Capacity Estimation with State Projection

Recent literature reports a variety of approaches for estimating the capacity and/
or internal resistance of Li-ion batteries. In general, these approaches can be cat-
egorized into (1) adaptive filtering approaches [31, 32, 34–42], (2) coulomb
counting approaches [36, 43], (3) neural network approaches [44–46], and
(4) kernel regression approaches [47–50]. In what follows, we elaborate on a
capacity estimation method that utilizes the SOC estimates before and after the state
projection to estimate the capacity. Based on a capacity estimate Ck, the state
projection scheme projects the SOC through a time span LΔt, expressed as [35]

SOCkþL ¼ SOCk þ
R tkþL

tk
iðtÞdt

Ck
ð9:10Þ

The effect of the capacity on the projected SOC is graphically explained in
Fig. 9.18, where the projected SOCs with larger/smaller-than-true capacity esti-
mates exhibit positive/negative deviations from their true values under a constant
current discharge. This observation has two implications: (1) the capacity signifi-
cantly affects the SOC estimation and inaccurate capacity estimation leads to
inaccurate SOC estimation; and (2) the SOCs before and after the state projection, if
accurately estimated based on the voltage and current measurements, can be used
along with the net charge flow to back-estimate the capacity. The second impli-
cation can be mathematically expressed as

Ck ¼
R tkþ L

tk
iðtÞdt

SOCkþ L � SOCk
ð9:11Þ

At the start of every state projection (i.e., at the time tk), an accurate SOC estimate is
needed. This estimate will then be projected through the projection time span
LΔt according to the state projection equation in Eq. 9.11. Upon the completion of
every state projection (i.e., at the time tk+L), we also need to have an accurate SOC
estimate to complete the capacity estimation. It is important to note that accuracy in
the SOC estimation is a key factor that affects accuracy in the capacity estimation.
In applications where the SOC estimates contain large measurement or estimation
noise, the state projection expressed by Eq. 9.11 will result in inaccurate and biased
capacity estimates, as also noted in [39]. In order to maintain an acceptable level of
accuracy in capacity estimation in the presence of inaccurate SOC estimates, a large
cumulated charge (i.e., the numerator in Eq. 9.11) is needed to compensate for the
inaccuracy in the SOC estimation.

Li-ion cells for this case study were constructed in hermetically sealed prismatic
cases between 2002 and 2012 and subjected to full depth of discharge cycling with a
nominal weekly discharge rate (C/168 discharge) at 37 °C [33]. The cycling data from
four 2002 cells was used to verify the effectiveness of the method for capacity
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estimation. The cell discharge capacity was estimated based on the state projection
scheme. In this study, an unknown SOC (or 1 − DOD) at a specific OCV level was
approximated based on the cubic spline interpolation with a set of known OCV and
SOC values (see the measurement points and interpolated curve in Fig. 9.19a). As
shown in Fig. 9.19a, the state projection zone spans an OCV range of 4.0–3.7 V. In
Fig. 9.19b, the netflow charge in this state projection zonewas plotted as a function of
cell discharge capacity for four test cells (cells 1–4) at eight different cycles spanning
the whole 10-year test duration. The graph shows that the net flow charge is a linear
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Fig. 9.19 a Plot of OCV as a function of DOD with state projection zone and b plot of
normalized net flow discharge as a function of normalized discharge capacity. Reprinted (adapted)
with permission from Ref. [33]

Fig. 9.18 Effect of capacity on state projection (assuming a constant current discharge). Reprinted
(adapted) with permission from Ref. [33]
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function of the cell discharge capacity. This observation suggests that a linear model
can be generated to relate the capacity to the current integration. In fact, this linear
model is exactly the one given in Eq. 9.11. With the SOCs at 4.0 and 3.7 V, derived
based on the OCV-SOC relationship, and the net flow charge calculated by coulomb
counting, the cell discharge capacity can be computed based on Eq. 9.11.

The capacity estimation results for the first two cells (i.e., Cells 1 and 2) are
shown in Fig. 9.20. This figure shows that the capacity estimation method closely
tracks the capacity fade trend throughout the cycling test for both cells. Table 9.6
summarizes the capacity estimation errors for the four cells. Here, the root mean
square (RMS) and the maximum errors are formulated as

eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nc

XNc

i¼1

DĈi � DCi
� �2

;

vuut eMax ¼ max
1� i�Nc

DĈi � DCi



 

 ð9:12Þ

where NC is the number of charge/discharge cycles; and DCi and DĈi are respec-
tively the measured and estimated normalized capacities at the ith cycle. Observe
that the average error is less than 1% for any of the four cells and the maximum
error is less than 3%. The results suggest that the state projection method is capable
of producing accurate and robust capacity estimation in the presence of cell-to-cell
manufacturing variability.
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Fig. 9.20 Capacity estimation results of a cell 1 and b cell 2; results are plotted every 50 cycles
for ease of visualization. Reprinted (adapted) with permission from Ref. [33]

Table 9.6 Capacity estimation results for the 4 test cells. Reprinted (adapted) with permission
from Ref. [33]

Cell Cell 1 Cell 2 Cell 3 Cell 4

RMS error (%) 0.52 0.51 0.88 0.52

Maximum error (%) 2.38 2.91 2.10 2.90
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9.5.3 Designing the Health Prognostics Function

An RUL estimate for Li-ion batteries refers to the available service time or number
of charge/discharge cycles left before the performance of the system degrades to an
unacceptable level. Research on battery health prognostics has to date been mainly
conducted by researchers in the prognostics and health management (PHM) society.
For example, a Bayesian framework with a particle filter was proposed for prog-
nostics (i.e., RUL prediction) of Li-ion batteries based on impedance measurements
[51]. In order to eliminate the need for prognostics to rely on impedance mea-
surement equipment, researchers have developed various model-based approaches
that predict RUL by extrapolating a capacity fade model [52–55]. In addition,
particle filters (or the sequential Monte Carlo methods) described in Sect. 8.4.1 can
be used for online updating of a capacity fade model for lithium-ion batteries and
for prediction of RUL using the updated model [33].

The RUL is used as the relevant metric for determining the state of life (SOL) of
Li-ion batteries. Based on the capacity estimates obtained from the state projection
scheme, the Gauss-Hermite particle filter technique is used to project the capacity
fade trend to the end of life (EOL) value for the RUL prediction [33]. Here the EOL
value is defined as 78.5% of the BOL discharge capacity. Figure 9.21a shows the
capacity tracking and RUL prediction from the GHPF at cycle 200 (or 3.1 years).
The figure shows that the predicted PDF of the life provides a slightly conservative
solution and includes the true EOL cycle (i.e., 650 cycles or approximately
9.4 years). Figure 9.21b plots the RUL predictions from the GHPF at multiple
cycles throughout the lifetime. The graph shows that, as we keep updating the RUL
distribution throughout the battery lifetime, the prediction tends to converge to the
true value as the battery approaches its EOL cycle.
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Fig. 9.21 RUL prediction results of cell 1; Figure a plots the capacity tracking and RUL
prediction provided by the GHPF at cycle 200 (results are plotted every 20 cycles for ease of
visualization) and b plots the RUL predictions from the GHPF at multiple cycles throughout the
lifetime. Reprinted (adapted) with permission from Ref. [33]

330 9 Case Studies: Prognostics and Health Management (PHM)



www.manaraa.com

9.6 Fuel Cells

Although fuel cells are promising candidates for future power generation, com-
mercialization of fuel cells remains a future prospect due to safety concerns. Thus,
accurate evaluation of the state of health (SOH) of fuel cells is necessary to enable
condition-based maintenance to prevent impending catastrophic failures of the fuel
cells. In this case study, the fuel cell is modeled by an equivalent circuit model
(ECM) whose parameters are the health indicators. The reasoning function deals
with the task of estimating the ECM parameters. The reasoning function can be
attained by either measuring or estimating the impedance spectrum of the fuel cell.
In the prognostic function, the ECM parameters are estimated for a future time with
the help of voltage estimation.

9.6.1 Overview of Fuel Cells

This section provides a basic overview of fuel cells. The basic structure of a fuel cell
contains an anode, a cathode, and electrolyte, as shown in Fig. 9.22. The hydrogen
is supplied from the anode side. It reacts with the oxygen coming from the cathode
side, and this reaction produces water. This overall reaction is made up of two
reactions.

H2 ! 2Hþ þ 2e�
1
2O2 þ 2Hþ þ 2e� ! H2O

ð9:13Þ

The first reaction, separation of a hydrogen molecule into hydrogen ions and
electrons, occurs at the interface between the anode and the electrolyte. The
hydrogen ions then move to the cathode through the electrolyte to complete the
reaction. Since the electrolyte only allows the ions to pass, the electrons transfer
through an external wire and provide energy to the load on the way to the cathode.
This process continues as long as the hydrogen fuel supply remains.

During operation of a fuel cell, individual components of the fuel cell are subject
to degradation. The degradation rate accelerates during particular working steps,

Fig. 9.22 Basic structure of a
fuel cell
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such as during the transportation of the reactants, and during charge transfers. It
also varies based on the rate of the electrochemical reactions. Variation in the
degradation rates of fuel cells is due to the varied degradation of each component in
the fuel cell; membrane, catalyst layer, gas diffusion layer, and bipolar plates. For
example, the membrane can undergo mechanical, thermal, and electrochemical
degradation due to non-uniform stresses during the assembly or as cycling hydra-
tion induces mechanical stress on the membrane. Also, increased operating tem-
peratures due to reactant crossover via pinholes or perforations decompose the
membrane. Further, the radicals generated by the undesirable side reaction diminish
the membrane. In the electrocatalyst layer, the detachment, dissolution of the cat-
alyst, and growth in catalyst particle reduce the catalytic area and, thus, reduce the
catalyst activity. Also, corrosion can occur in the gas diffusion layer and bipolar
plates. Degradation of individual components, of course, occurs in a combined
manner. The electrochemical side reaction weakens the mechanical strength of the
membrane. Mechanical degradation brings about local pinholes and results in
thermal degradation due to the crossover of the reactant, which again enhances the
side reaction rate. This complex degradation must be prevented before it ends up
resulting in a catastrophe, such as an explosion. Prevention starts from knowing the
current status, and furthermore by predicting the future status of the fuel cells.

9.6.2 Designing the Health Reasoning Function

In general, diagnostics of a fuel cell is conducted using in-situ characterization
techniques. There are several characterization techniques used to estimate the
properties of the fuel cells, including: the kinetic property, ohmic property, mass
transport property, and so on. Well-known techniques include the polarization
curve, current interrupt method, and the electrochemical impedance spectroscopy
(EIS) method. Among the methods, the EIS test, when combined with the ECM,
gives abundant information about the fuel cells. This section briefly explains the use
of the EIS method for diagnosing fuel cells.

The EIS test measures the impedance, which is the ratio of the time-dependent
voltage to the time-dependent current, at various frequencies. According to the fuel
cell’s properties, various shapes of impedance plots are obtained. For example,
Fig. 9.23 shows a typical impedance spectrum of a fuel cell. The radii of the three
semi-circles correspond to the anode activation loss, the cathode activation loss, and
the mass transport loss, respectively. Also, the amount of the curve shift from the
origin designates the ohmic loss. The impedance spectrum can be interpreted in a
quantitative way with the help of equivalent circuit modeling. The equivalent circuit
model is used to describe the impedance spectral behavior. The anode and cathode
activation losses are represented by the parallel connection of the resistor and the
capacitor. RA and RC indicate the kinetic resistance of the electrochemical reaction,
and CA and CC show the charge separation at the interface between the electrode
and the electrolyte. The ohmic resistance is represented as Ro, and the mass
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transport is modeled using the Warburg element, ZW. Measuring the impedance
spectrum and fitting the ECM gives the parameters of the ECM; these parameters
tell us the main problem that the fuel cell is experiencing, and how much the fuel
cell suffers from it.

In spite of the robust features of the EIS method, obtaining the impedance
spectrum of a fuel cell requires an expensive impedance analyzer and stable
measurement conditions. These requirements make it difficult for EIS to be appli-
cable for online use. Thus, broadband current interruption techniques have been
developed to overcome the shortcomings of the EIS method. These methods utilize
current interrupting waveforms, such as pseudo-random binary sequence (PRBS)
and multi-sine signals, imposed on the operating current. They estimate the
impedance spectrum by analyzing the voltage response to the interrupting current.
These methods reduce the measurement time and extract information similar to that
found through EIS measurements.

9.6.3 Designing the Health Prognostics Function

The health indicator defined and estimated in the reasoning stage can be extrapo-
lated to predict the future status of the fuel cell. This section explains the process for
life prognosis using predictions of the health parameters of the equivalent circuit.

One way of predicting the health parameters is to combine the health parameters
with a physical property of the fuel cell and induce its health parameters [56]. In
fuel cells, voltage is a well-known lumped health indicator, and it can be related to
the health parameters of the equivalent circuit. An example is shown in Fig. 9.24.

Figure 9.24a shows the equivalent circuit of the fuel cell and its parameters,
Fig. 9.24b shows the voltage degradation curve, and Fig. 9.24c depicts the relation
between one of the model parameters and the voltage. From this relation, and with
the help of the voltage prediction, the health parameters for future status can be
estimated.

The voltage is modeled through two degradation models: reversible and irre-
versible. The reversible degradation is temporary and recoverable. An example of a
reversible degradation is water clogging in flow channels. Irreversible degradation

Re(Z)

-Im(Z)

Anode CathodeElectrolyte

RoRA

CA

RC

CC

ZW

Fig. 9.23 Structure of a fuel
cell

9.6 Fuel Cells 333



www.manaraa.com

is permanent damage to the fuel cell, such as a melted membrane. Reversible and
irreversible degradation are modeled by exponential and linear models, respec-
tively, as shown in Fig. 9.25.

Fig. 9.24 a Equivalent circuit model, b measured voltage, c relationship between the voltage and
ECM parameter. Reprinted (adapted) with permission from Ref. [56]

Fig. 9.25 Prediction of
voltage (red) with voltage
data (blue). Reprinted
(adapted) with permission
from Ref. [56] (color figure
online)
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Next, the predicted voltage is used for estimating the health parameters. The
reconstructed impedance spectrum using the estimated parameters is compared with
the measured impedance spectrum and the comparison results are shown in
Fig. 9.26.

9.7 Pipelines

Pipelines are essential infrastructures in our modern society. Pipelines play crucial
roles in transporting various fluids, such as oil, water, and gas, from storage to
users. Leaks in pipelines result in economic, environmental, and social problems.
Thus, accurate detection and quick maintenance should be done to prevent these
problems. However, due to the characteristics of pipelines, the detection of leaks is
not easy. For example, accessibility of the pipeline is generally limited due to
installation conditions, which involve long distances that often include under-
ground, underwater, or alpine locations. To overcome these challenges, various leak
detection techniques, such as ground penetrating radar (GPR) [57], leak noise
correlators (LNC) [58], and pig-mounted acoustic (PMA) sensing [59], have been
developed over many years. In this section, a real-time and remote monitoring
detection method is introduced. This method uses a time-domain reflectometry
(TDR) technique that can stochastically detect multiple leaks using forward and
inverse models [60]. This method was validated through a case study that was
performed in a water distribution system. The water distribution system is the most
typical pipeline system. This TDR-based method is expected to be applicable to not
only water pipelines but also to other pipelines in general.

Fig. 9.26 Predicted impedance spectrum results of FC2 at time a 830, and b at time 1016 h.
Reprinted (adapted) with permission from Ref. [56]
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9.7.1 Designing the Health Sensing Function

TDR was originally proposed as a method for locating faults on a transmission line,
such as electrical open, short, or chafe. The principle of TDR is similar to RADAR,
which finds the location of an object by measuring a reflected radio wave. Likewise,
a TDR device propagates an incident pulse along the transmission line. When the
pulse meets any fault on the transmission line, the pulse is reflected at that location
and returns to the device. Thus, by measuring the travel time of the pulse from
departure to arrival, the fault location can be estimated by multiplying the propa-
gation velocity of the pulse. The cause of the reflection is the nonconformity of
impedance in the transmission line. The change of impedance is caused by a fault,
such as a short, open, or chafe of the transmission line. The shape and degree of
reflection are represented by the reflection coefficient, Г, as shown in Fig. 9.27.

The reflection coefficient, Г, is expressed as:

C1 ¼ ZF � Z0

ZF þZ0
ð9:14Þ

where Z0 is the characteristic impedance of the transmission line and ZF is the fault
impedance. If Г is less than zero, a wave shape of the reflected pulse is upside down
against the incident pulse, which indicates an electrical short. If the Г is 1, the wave
shape of the reflected pulse is same as that of the incident pulse, which specifically
indicates an electrical open condition, as shown in Fig. 9.28.

Similarly, using these electric characteristics, TDR-based leak detection methods
have been developed by correlating water leakage with an electric short in a
transmission line. To generate an electric short at the leak position, a leak detector
is used, as shown in Fig. 9.29. The device is connected to a transmission line
attached to the pipeline. The leak detector consists of two copper plates and a
plastic case with holes. As leaking water contacts the copper plates, a pulse signal is
reflected due to the resulting electric short.

Fig. 9.27 An impedance
disparity and the reflected
coefficient
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9.7.2 Designing the Health Reasoning Function

Even with the measured TDR signals, analysis of the reflected pulse signal for
accurate leak detection is not a simple matter. This is because ambient noise and
overlapped pulses can result from multiple leaks. Thus, both forward and inverse
models can be applied to accurately interpret the measured TDR signal. This
model-based leak detection method consists of three steps: (1) emulating possible
TDR signals through the forward model, (2) estimating the correlation of the
emulated signal with the measured one, and (3) determining the number of leaks
and their locations, as shown in Fig. 9.30. The first step is to simulate the TDR
signals for all possible leak situations using a forward model. The second step is to
calculate the correlation between the simulated and measured TDR signals using a
likelihood metric. Third, Bayesian inference is used to determine the number of
leaks, of which the simulated signal gives the maximum likelihood.

Normal Open

Short

Fig. 9.28 TDR signals according to transmission line conditions

Fig. 9.29 Concept of pipeline leak detection using a TDR and leak detectors
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The forward model produces simulated TDR signals as a function of model input
parameters, such as the physical properties of the transmission line and leak
information (e.g., the number of leaks and their locations). The forward model is
generally derived using RLCG circuit theory or S-parameters. It is known that the
S-parameter model is computationally far more efficient than the RLCG signal
modeling method.

The inverse model employs Bayesian inference, which infers the posterior
distributions of the model parameters from the prior distributions. The prior dis-
tribution of a leak’s location assumes a uniform distribution. Then, for all possible
leak situations, the likelihood function in Eq. 9.15 can be calculated by comparing
the simulated TDR signals (vm) with the measured TDR signal (y) [61]. Bayesian
inference is employed to determine the number of leaks and their locations. The
simulated signal yields the highest value of Pr(h|y), and h is the leak location.

Pr yjhð Þ ¼ 2prMð Þ�m=2exp � 1
2rM

k y� vm k2
� 	

ð9:15Þ

Lab-scale experiments were carried out for validation of this leak detection
system. The test bed consisted of a 10 m pipeline, a transmission line, a leak
detector, and a TDR device, as shown in Fig. 9.31a. The experiment was conducted
with three water leaks present, specifically at 5.5, 6, and 8 m. Figure 9.31b displays
the signal acquired from the experiment. As shown in the figure, this signal does not
easily identify leaks or locations.

Figure 9.31c displays the three leaks and their locations that were correctly
identified using Bayesian inference. It shows the marginal PDFs of the leak
locations.

9.8 Summary

Four core functions in PHM have been successfully applied to engineering appli-
cations. This chapter presented several case studies that explain successful PHM
practices: (1) steam turbine rotors, (2) wind turbine gearboxes, (3) the core and

Fig. 9.30 Framework for the model-based leak detection method
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windings in power transformers, (4) power generator stator windings, (5) lithium-ion
batteries, (6) fuel cells, and (7) water pipelines. These examples provide useful
findings about the four core functions of PHM technology, contemporary technology
trends, and industrial values. PHM offers great economic value to various industries
through condition-based maintenance (CBM), which helps operators schedule
maintenance actions based on the analyzed conditions of engineered systems.
Operators can minimize unnecessary maintenance actions and can prevent catas-
trophic system failures by reliably predicting a system’s health condition. CBM can
substantially save on overall operation and maintenance (O&M) costs.
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